微信扫码
添加专属顾问
我要投稿
本篇介绍为什么 LLM 推理加速有 KV Cache 而没有 Q Cache。
简单来说,LLM 在 decoding 阶段的每次推理只会用到当前的 Q,这次用的 Q 下次不会用到,所以不用 Cache Q。
但是每次都要用到当前和过去所有的 KV,这次用到的 KV 下次马上就要再用一次,所以 Cache KV 可以加速推理。
下面说明原因:
直到这一步,K 和 Q 看上去都很对称。轮换一下 K 和 Q 对结果没有本质影响。
这是没有 Causal Mask(因果掩码)的情况。
无论有没有 Causal Mask,Q 和 K 在结果中都是不对称的。
在序列的 t 位置,Q 只有当前位置的 ??q_t 参与了计算,而 K 和 V 多个位置参与了计算,所以需要 KV Cache,而不需要 Q Cache。
在没有 Causal Mask 时,计算 t 位置的 Attention 需要未来的 KV,这在实际进行自回归推理时无法得到;加上 Causal Mask 之后,只需要 1,2,…,t 位置的 KV 就可以进行推理。
来源:https://www.zhihu.com/question/653658936/answer/3545520807
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-11-04
阿里新研究:统一了VLA和世界模型
2025-11-04
开发一套Agent平台难吗?
2025-11-04
Dify VS N8N 谁更牛?
2025-11-03
详解Al Agent (智能体) L0-L5的分级框架!
2025-11-03
大模型不擅长点鼠标?中科院团队打造AI专属交互界面,任务成功率提升67%
2025-11-03
我错了,Gemini 做PPT不是“一般”,是“封神”。(尤其挖到第3层功能后…)
2025-11-03
微信开发者工具 2.0,全面升级智能编程新体验
2025-11-03
实战·Agentic 上下文工程(下):实现一个可自我学习与进化的智能体原型
2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20