微信扫码
添加专属顾问
我要投稿
字节跳动Dolphin方案突破文档解析瓶颈,两阶段设计兼顾精度与效率,轻松应对复杂布局挑战。 核心内容: 1. 现有文档解析方案的两大技术路线及其局限性 2. Dolphin创新的分析-解析双阶段架构设计原理 3. 方案在表格/公式等复杂元素处理中的实战表现
现有的文档图像解析解决方案主要分为两大类:基于集成的方法和端到端的方法。
Dolphin (Document Image Parsing via Heterogeneous Anchor Prompting)采用了一种分析-解析范式(analyze-then-parse),将文档解析过程分解为两个阶段:
这种两阶段的设计既避免了传统集成方法中多模型协调的复杂性,又克服了端到端方法在复杂布局和长文档解析中的效率瓶颈,还能通过轻量级架构和并行解析机制实现优越的运行效率。
L = {l1, l2, ..., ln}
通过这个链接可以免费试用
http://115.190.42.15:8888/dolphin/
Dolphin 提供了两个推理框架,支持两个解析粒度:
页面级解析:将整个文档图像解析为结构化的 JSON 和 Markdown 格式
元素级解析:解析单个文档元素(文本、表格、公式)
import argparse
import glob
import os
import cv2
import torch
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
from utils.utils import *
class DOLPHIN:
def __init__(self, model_id_or_path):
"""Initialize the Hugging Face model
Args:
model_id_or_path: Path to local model or Hugging Face model ID
"""
# Load model from local path or Hugging Face hub
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
self.model.eval()
# Set device and precision
self.device = "cuda"if torch.cuda.is_available() else"cpu"
self.model.to(self.device)
self.model = self.model.half() # Always use half precision by default
# set tokenizer
self.tokenizer = self.processor.tokenizer
def chat(self, prompt, image):
"""Process an image or batch of images with the given prompt(s)
Args:
prompt: Text prompt or list of prompts to guide the model
image: PIL Image or list of PIL Images to process
Returns:
Generated text or list of texts from the model
"""
# Check if we're dealing with a batch
is_batch = isinstance(image, list)
if not is_batch:
# Single image, wrap it in a list for consistent processing
images = [image]
prompts = [prompt]
else:
# Batch of images
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
# Prepare image
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
# Prepare prompt
prompts = [f"<s>{p} <Answer/>"for p in prompts]
batch_prompt_inputs = self.tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
# Generate text
outputs = self.model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1
)
# Process output
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
# Clean prompt text from output
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
# Return a single result for single image input
if not is_batch:
return results[0]
return results
def process_page(image_path, model, save_dir, max_batch_size=None):
"""Parse document images with two stages"""
# Stage 1: Page-level layout and reading order parsing
pil_image = Image.open(image_path).convert("RGB")
layout_output = model.chat("Parse the reading order of this document.", pil_image)
# Stage 2: Element-level content parsing
padded_image, dims = prepare_image(pil_image)
recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size)
# Save outputs
json_path = save_outputs(recognition_results, image_path, save_dir)
return json_path, recognition_results
def process_elements(layout_results, padded_image, dims, model, max_batch_size=None):
"""Parse all document elements with parallel decoding"""
layout_results = parse_layout_string(layout_results)
# Store text and table elements separately
text_elements = [] # Text elements
table_elements = [] # Table elements
figure_results = [] # Image elements (no processing needed)
previous_box = None
reading_order = 0
# Collect elements to process and group by type
for bbox, label in layout_results:
try:
# Adjust coordinates
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
# Crop and parse element
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0:
if label == "fig":
# For figure regions, add empty text result immediately
figure_results.append(
{
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"text": "",
"reading_order": reading_order,
}
)
else:
# Prepare element for parsing
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
# Group by type
if label == "tab":
table_elements.append(element_info)
else: # Text elements
text_elements.append(element_info)
reading_order += 1
except Exception as e:
print(f"Error processing bbox with label {label}: {str(e)}")
continue
# Initialize results list
recognition_results = figure_results.copy()
# Process text elements (in batches)
if text_elements:
text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size)
recognition_results.extend(text_results)
# Process table elements (in batches)
if table_elements:
table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size)
recognition_results.extend(table_results)
# Sort elements by reading order
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def process_element_batch(elements, model, prompt, max_batch_size=None):
"""Process elements of the same type in batches"""
results = []
# Determine batch size
batch_size = len(elements)
if max_batch_size is not None and max_batch_size > 0:
batch_size = min(batch_size, max_batch_size)
# Process in batches
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
# Use the same prompt for all elements in the batch
prompts_list = [prompt] * len(crops_list)
# Batch inference
batch_results = model.chat(prompts_list, crops_list)
# Add results
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
return results
def main():
parser = argparse.ArgumentParser(description="Document processing tool using DOLPHIN model")
parser.add_argument("--model_path", default="./hf_model", help="Path to Hugging Face model")
parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image or directory of images")
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="Directory to save parsing results (default: same as input directory)",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=16,
help="Maximum number of document elements to parse in a single batch (default: 16)",
)
args = parser.parse_args()
# Load Model
model = DOLPHIN(args.model_path)
# Collect Document Images
if os.path.isdir(args.input_path):
image_files = []
for ext in [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"]:
image_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
image_files = sorted(image_files)
else:
if not os.path.exists(args.input_path):
raise FileNotFoundError(f"Input path {args.input_path} does not exist")
image_files = [args.input_path]
save_dir = args.save_dir or (
args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
)
setup_output_dirs(save_dir)
total_samples = len(image_files)
print(f"\nTotal samples to process: {total_samples}")
# Process All Document Images
for image_path in image_files:
print(f"\nProcessing {image_path}")
try:
json_path, recognition_results = process_page(
image_path=image_path,
model=model,
save_dir=save_dir,
max_batch_size=args.max_batch_size,
)
print(f"Processing completed. Results saved to {save_dir}")
except Exception as e:
print(f"Error processing {image_path}: {str(e)}")
continue
if __name__ == "__main__":
main()
import argparse
import glob
import os
import torch
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
from utils.utils import *
class DOLPHIN:
def __init__(self, model_id_or_path):
"""Initialize the Hugging Face model
Args:
model_id_or_path: Path to local model or Hugging Face model ID
"""
# Load model from local path or Hugging Face hub
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
self.model.eval()
# Set device and precision
self.device = "cuda"if torch.cuda.is_available() else"cpu"
self.model.to(self.device)
self.model = self.model.half() # Always use half precision by default
# set tokenizer
self.tokenizer = self.processor.tokenizer
def chat(self, prompt, image):
"""Process an image with the given prompt
Args:
prompt: Text prompt to guide the model
image: PIL Image to process
Returns:
Generated text from the model
"""
# Prepare image
pixel_values = self.processor(image, return_tensors="pt").pixel_values
pixel_values = pixel_values.half()
# Prepare prompt
prompt = f"<s>{prompt} <Answer/>"
prompt_ids = self.tokenizer(
prompt,
add_special_tokens=False,
return_tensors="pt"
).input_ids.to(self.device)
decoder_attention_mask = torch.ones_like(prompt_ids)
# Generate text
outputs = self.model.generate(
pixel_values=pixel_values.to(self.device),
decoder_input_ids=prompt_ids,
decoder_attention_mask=decoder_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
)
# Process the output
sequence = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)[0]
sequence = sequence.replace(prompt, "").replace("<pad>", "").replace("</s>", "").strip()
return sequence
def process_element(image_path, model, element_type, save_dir=None):
"""Process a single element image (text, table, formula)
Args:
image_path: Path to the element image
model: HFModel model instance
element_type: Type of element ('text', 'table', 'formula')
save_dir: Directory to save results (default: same as input directory)
Returns:
Parsed content of the element and recognition results
"""
# Load and prepare image
pil_image = Image.open(image_path).convert("RGB")
pil_image = crop_margin(pil_image)
# Select appropriate prompt based on element type
if element_type == "table":
prompt = "Parse the table in the image."
label = "tab"
elif element_type == "formula":
prompt = "Read text in the image."
label = "formula"
else: # Default to text
prompt = "Read text in the image."
label = "text"
# Process the element
result = model.chat(prompt, pil_image)
# Create recognition result in the same format as the document parser
recognition_result = [
{
"label": label,
"text": result.strip(),
}
]
# Save results if save_dir is provided
if save_dir:
save_outputs(recognition_result, image_path, save_dir)
print(f"Results saved to {save_dir}")
return result, recognition_result
def main():
parser = argparse.ArgumentParser(description="Element-level processing using DOLPHIN model")
parser.add_argument("--model_path", default="./hf_model", help="Path to Hugging Face model")
parser.add_argument("--input_path", type=str, required=True, help="Path to input image or directory of images")
parser.add_argument(
"--element_type",
type=str,
choices=["text", "table", "formula"],
default="text",
help="Type of element to process (text, table, formula)",
)
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="Directory to save parsing results (default: same as input directory)",
)
parser.add_argument("--print_results", action="store_true", help="Print recognition results to console")
args = parser.parse_args()
# Load Model
model = DOLPHIN(args.model_path)
# Set save directory
save_dir = args.save_dir or (
args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
)
setup_output_dirs(save_dir)
# Collect Images
if os.path.isdir(args.input_path):
image_files = []
for ext in [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"]:
image_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
image_files = sorted(image_files)
else:
if not os.path.exists(args.input_path):
raise FileNotFoundError(f"Input path {args.input_path} does not exist")
image_files = [args.input_path]
total_samples = len(image_files)
print(f"\nTotal samples to process: {total_samples}")
# Process images one by one
for image_path in image_files:
print(f"\nProcessing {image_path}")
try:
result, recognition_result = process_element(
image_path=image_path,
model=model,
element_type=args.element_type,
save_dir=save_dir,
)
if args.print_results:
print("\nRecognition result:")
print(result)
print("-" * 40)
except Exception as e:
print(f"Error processing {image_path}: {str(e)}")
continue
if __name__ == "__main__":
main()
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-05-29
2025-03-20
2025-03-21
2025-03-16
2025-03-16
2025-04-11
2025-03-20
2025-03-19
2025-03-20
2025-03-19
2025-06-13
2025-06-13
2025-06-13
2025-06-13
2025-06-12
2025-06-12
2025-06-12
2025-06-12