微信扫码
添加专属顾问
我要投稿
在Llamaindex的全栈项目分享会上,我多次提到要优先使用RAG,尽量不要微调或增量,大规模的+数据质量错位的,微调+增量技术,不靠谱,很难收到结果!
在会议末尾讲了一下什么情况下用RAG,也分享了一些RAG的坑和经验,刚刚不想让会议显得太长,我这里再补充一下:
重申技术背后:
RAG技术是通过从外部来源检索信息,将内容添加到提示中,然后调用LLM!
目标是为模型提供其参数化上下文(或基本知识)中可能没有的信息。
存在问题与经验:
① 交互问题
通常需要三四轮对话才能理解客户的问题,因为一开始消息没有深入,都是客套话!没用!
当然,可以设置马上开始检索,但!过早检索数据时,检索的文本没有足够上下文,是很容易检索到垃圾信息的,除非你可以一条提示词,办完事!否则,这时,大模型的注意力集中在错误内容上,降低了生成的准确度!
② 尝试优化想法
基于以上,我们设计了一个确定对话意图过程,然后切换到对应+专门的RAG提示词!有效,但很呆!
③ 最终方案
我们需要多个提示词和状态来模拟对话!基于以上的升级!
LLM Agent(带工具)
与一组操作(工具)配对的提示词
在对话过程中,提示可以返回一个响应,指示应该调用一个带有参数的操作
例如:管理代理的软件执行该操作(“调用baidu.com”)并将结果作为新消息返回到提示词。使用新结果继续与用户进行对话!
④ RAG有两种模式的
第一种:静态,使用提示词和已向量的数据,检索交互
第二种:动态,一边交互,一边把交互内容,生成搜索词,会呼吸的RAG,实现自主更新!提高生成质量!
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-30
聊聊AI智能体框架MetaGPT下的RAG实践
2025-04-30
如何用大模型+RAG给宠物做一个AI健康助手(干货分享)?
2025-04-30
HiRAG:基于层级知识索引和检索的高精度RAG
2025-04-29
教程|通义Qwen 3 +Milvus,混合推理模型才是优化RAG成本的最佳范式
2025-04-29
RAG开发框架LangChain与LlamaIndex对比解析:谁更适合你的AI应用?
2025-04-29
RAG性能暴增20%!清华等推出“以笔记为中心”的深度检索增强生成框架,复杂问答效果飙升
2025-04-29
超神了,ChatWiki 支持GraphRAG,让 AI 具备垂直深度推理能力!
2025-04-29
AI 产品思维:我如何把一个 AI 应用从基础 RAG 升级到 multi-agent 架构
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-30
2025-04-29
2025-04-29
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20