微信扫码
添加专属顾问
我要投稿
在处理非结构化文档时,特别是那些包含复杂表格的文档,一直是信息抽取和知识图谱构建的一大难题。随着人工智能技术的飞速发展,尤其是大型语言模型(LLM)的广泛应用,为我们提供了一种全新的视角和方法来应对这一挑战。下面我们简单了解RAG(Retrieval-Augmented Generation)流程,探讨如何在遇到PDF表格时,构建有效的索引,并利用大模型进行高质量的问答(QA)。
为了解决上述挑战,我们需要借助一些关键技术。最紧要的就是表格解析技术。表格解析的主要目标是准确、完整地提取出PDF文档中的表格结构,并将其转换为易于处理的格式。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-12
Meta如何给RAG做Context Engineering,让模型上下文增加16倍
2025-09-12
检索器江湖:那些让RAG神功大成的武林绝学
2025-09-12
Dify + Oracle + MCP:轻松构建 RAG 与 MCP Agent 智能应用
2025-09-11
做好 RAG 落地最后环节 —— 评估 RAG 应用
2025-09-10
企业级RAG系统实战心得:来自10多个项目的深度总结
2025-09-10
您应该为您的 RAG 系统使用哪种分块技术?
2025-09-10
关于多模态应用的几个疑问,以及多模态应该怎么应用于RAG?
2025-09-10
MiniMax RAG 技术:从推理、记忆到多模态的演进与优化
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-15
2025-06-20
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05