微信扫码
添加专属顾问
我要投稿
在处理非结构化文档时,特别是那些包含复杂表格的文档,一直是信息抽取和知识图谱构建的一大难题。随着人工智能技术的飞速发展,尤其是大型语言模型(LLM)的广泛应用,为我们提供了一种全新的视角和方法来应对这一挑战。下面我们简单了解RAG(Retrieval-Augmented Generation)流程,探讨如何在遇到PDF表格时,构建有效的索引,并利用大模型进行高质量的问答(QA)。
为了解决上述挑战,我们需要借助一些关键技术。最紧要的就是表格解析技术。表格解析的主要目标是准确、完整地提取出PDF文档中的表格结构,并将其转换为易于处理的格式。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-14
什么是RAG?一文搞懂检索增强生成技术
2025-06-14
AI开发实战:解决RAG的召回不准问题
2025-06-13
揭开RAG的神秘面纱:90%的人不知道腾讯IMA底层原理
2025-06-13
金融智脑:破解RAG系统在金融场景中常见失败的七大陷阱
2025-06-13
从零开始学 Dify - Dify 的 RAG 系统如何有效地处理和检索大量文档?
2025-06-13
大模型:多种RAG组合优化(langchain实现)
2025-06-12
深入使用 Deep Research 后,我确信 RAG 的未来是 Agent
2025-06-12
从传统 RAG 到知识图谱 + Agent,知识库 AI 问答成功率终于达到 95% 了,来自蚂蚁集团的经验
2025-03-21
2025-03-20
2025-03-24
2025-03-17
2025-03-24
2025-03-19
2025-03-24
2025-03-28
2025-04-01
2025-03-23
2025-06-13
2025-06-09
2025-06-06
2025-05-30
2025-05-29
2025-05-29
2025-05-23
2025-05-16