微信扫码
添加专属顾问
我要投稿
这个工作要解决个什么问题呢? RAG 得流程是通过将文档召回,放入LLM的上下文中,来提供更准确和相关的答案。但是现有的 RAG 解决方案可能比较难处理,召回的内容来自完全不同的文档,因为这些文档在语义空间中可能很远,很难将它们全部检索出来。
论文中有张图如下图,正常的RAG在遇到query有点复杂的时候,在召回的时候就很麻烦。如果是纯粹的绿点主题或者黄点主题那都没太大问题。但是如果是复杂的多主题的,到向量空间之后就不好召回了。
那咋整呢,大概的一个方案就是下图,query被拆解成了多个向量,每个向量比较纯粹,类似于多路召回,总能匹配到需要的chunk。
怎么获取多个向量呢? MRAG通过使用Transformer的多头注意力层的特征作为向量表征,而不是仅使用取最后解码器层的输出,这样做的动机是不同的注意力头可以学习捕获数据的不同方面。每一层取一个向量,取最后一个位置的。chunks和query都生成多个向量,检索的时候,使用投票策略,结合了不同嵌入空间的重要性得分(根据一层的头内向量空间分布计算的),来选择最相关的文本块,并根据其重要性对检索结果进行加权。
最后结果在召回的相关性方面获得了比较大的提升
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-30
聊聊AI智能体框架MetaGPT下的RAG实践
2025-04-30
如何用大模型+RAG给宠物做一个AI健康助手(干货分享)?
2025-04-30
HiRAG:基于层级知识索引和检索的高精度RAG
2025-04-29
教程|通义Qwen 3 +Milvus,混合推理模型才是优化RAG成本的最佳范式
2025-04-29
RAG开发框架LangChain与LlamaIndex对比解析:谁更适合你的AI应用?
2025-04-29
RAG性能暴增20%!清华等推出“以笔记为中心”的深度检索增强生成框架,复杂问答效果飙升
2025-04-29
超神了,ChatWiki 支持GraphRAG,让 AI 具备垂直深度推理能力!
2025-04-29
AI 产品思维:我如何把一个 AI 应用从基础 RAG 升级到 multi-agent 架构
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-30
2025-04-29
2025-04-29
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20