微信扫码
添加专属顾问
我要投稿
在金融领域,从非结构化文本数据(如财报电话会议记录)中提取和解释复杂信息对大型语言模型(LLMs)来说是一个挑战,尤其是当这些文档包含特定领域的术语和复杂格式时。
描述RAG应用向量数据库创建的示意图
知识图谱构建(Knowledge Graph Construction):这包括三个主要步骤:知识提取、知识改进和知识适应。知识提取涉及从非结构化或半结构化数据中提取结构化信息,包括实体识别、关系提取和共指消解。知识改进旨在通过移除冗余和填补信息空白来提高 KG 的质量和完整性。知识融合则结合来自多个源的信息,创建一个一致和统一的 KG。
GraphRAG:基于知识图谱的 RAG(GraphRAG)也是从用户输入的查询开始。与 VectorRAG 的主要区别在于检索部分。在这里,查询用于搜索 KG 以检索与查询相关的节点(实体)和边(关系)。然后从完整的 KG 中提取包含这些相关节点和边的子图,以提供上下文。
描述GraphRAG知识图谱创建过程的示意图
在忠实度方面,GraphRAG 和 HybridRAG 显示出更优越的性能,两者都达到了0.96的得分,而 VectorRAG 略低一些,得分为0.94。
答案相关性得分在不同方法之间有所不同,HybridRAG 以0.96的得分领先,其次是 VectorRAG 的0.91,GraphRAG 的0.89。
上下文精确度方面,GraphRAG 以0.96的得分最高,显著超过了 VectorRAG 的0.84 和 HybridRAG 的0.79。然而,在上下文召回率方面,VectorRAG 和 HybridRAG 都达到了完美的1分,而 GraphRAG 落后于0.85。
https://arxiv.org/pdf/2408.04948HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-12-07
Embedding模型选型思路:相似度高不再代表检索准确(文末附实战指南)
2025-12-06
Palantir Ontology 助力AIP Agent落地工具介绍:Object Query
2025-12-05
把AI记忆做好,是一个价值6千亿美元的市场
2025-12-05
我错了,RAG还没完!AI记忆的结合会成为下一个技术风口
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-09-16
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10