微信扫码
添加专属顾问
我要投稿
预处理的作用是判断文档内容是否需要进行OCR识别,如果是普通可编辑的PDF文档,则使用PyMuPDF库提取元信息。
模型层除了常规的OCR、版面结构分析外,还有公式检测模型,可提取公式内容,用于后续把公式转化为Latex格式。但是目前暂无表格内容识别,官方预计1个月之内会放出。
管线层主要是把上面模型的结果进行加工处理。比如把公式转化为Latex格式、图表保存起来成为图片、把文本框进行排序和合并以及过滤掉无用的信息(页眉、页脚等)。
输出层其实就是结果文件夹中的内容。结果文件夹中有layout.pdf、span.pdf、xx_middle.json、xx_model.json、xx_content_list.json、xx.md、images文件夹。
• layout.pdf 可以看到 版面结构的识别结果
• span.pdf 可以看到具体每个文本框的内容
• xx_middle.json 是用OCR或者PDF库解析出的文档元信息,包含文本块类型、内容和坐标。
• xx_model.json 是版面分析结果的内容,包含文本块的类型、坐标和置信度。
• xx_content_list.json 中是文档的类型和具体内容,图表则用img_path指定存放的图片的路径。
创建一个python环境,建议python3.10以上
conda create -n MinerU python=3.10
conda activate MinerU
接着安装magic-pdf
和detectron2
这个包
pip install magic-pdf[full-cpu]
pip install detectron2 --extra-index-url https://myhloli.github.io/wheels/
magic-pdf --version
注意查看版本是否在0.6.x以上,否则会有问题。英特尔芯片的Mac电脑由于某些库的依赖原因,只能到0.5.x的版本。对于M系列的芯片,经过实测发现不支持mps加速,还是只能使用CPU。
接着下载模型权重:https://huggingface.co/wanderkid/PDF-Extract-Kit
接着把该仓库中的magic-pdf.template.json
文件拷贝到本地,修改models-dir
为下载到本地的模型路径。
{
"models-dir": "/tmp/models"
}
需要注意的是这个路径是绝对路径
• 比较准确。从上面的图可以看出,无论是可编辑的PDF还是扫描版的PDF,都能非常好的区分出版面中不同类型的部分,而且最终的结果是以Markdown的格式保存的,可以很容易把不同章节、不同自然段按需进行切分。
• 硬件支持不够完善,目前存在很多不兼容的情况。M系列芯片暂时无法解决Bug,GPU未测过是否存在其他问题。而用CPU实在是太慢了,10几页的PDF就需要处理约5分钟。
• 版面结构进行排序和组合貌似用的全是自定义的规则函数,不太方便开发者进行复用或者微调。
• 表格内容暂时无法识别。目前只能把表格部分提取为图片保存起来。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-30
聊聊AI智能体框架MetaGPT下的RAG实践
2025-04-30
如何用大模型+RAG给宠物做一个AI健康助手(干货分享)?
2025-04-30
HiRAG:基于层级知识索引和检索的高精度RAG
2025-04-29
教程|通义Qwen 3 +Milvus,混合推理模型才是优化RAG成本的最佳范式
2025-04-29
RAG开发框架LangChain与LlamaIndex对比解析:谁更适合你的AI应用?
2025-04-29
RAG性能暴增20%!清华等推出“以笔记为中心”的深度检索增强生成框架,复杂问答效果飙升
2025-04-29
超神了,ChatWiki 支持GraphRAG,让 AI 具备垂直深度推理能力!
2025-04-29
AI 产品思维:我如何把一个 AI 应用从基础 RAG 升级到 multi-agent 架构
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-30
2025-04-29
2025-04-29
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20