微信扫码
添加专属顾问
我要投稿
.01
.02
.03
.04
.05
pip install azure-ai-openai lotus-nlp pyodbc pandas
# Azure OpenAI SDK
from azure.identity import DefaultAzureCredential
from azure.ai.openai import OpenAIClient
# LOTUS Library
import lotus
# Database Libraries
import pyodbc
import pandas as pd
# Set up Azure OpenAI Client
endpoint = "https://your-openai-resource.openai.azure.com/"
credential = DefaultAzureCredential()
openai_client = OpenAIClient(endpoint=endpoint, credential=credential)
# Set up LOTUS with OpenAI LLM
llm = lotus.OpenAI(azure_openai_client=openai_client)
# Database Connection
conn = pyodbc.connect(
'DRIVER={ODBC Driver 17 for SQL Server};'
'SERVER=your_server;DATABASE=your_database;UID=your_username;PWD=your_password'
)```
# Load data into a Pandas DataFrame
movies_df = pd.read_sql_query("SELECT * FROM movies", conn)
# Create a LOTUS table
movies_table = lotus.Table.from_dataframe(movies_df, name="movies", llm=llm)```
# Apply semantic filter
filtered_movies = movies_table.sem_filter("genre is romance and is considered a classic")
# Sort and select top 5
top_movies = filtered_movies.sort_values(by="box_office", ascending=False).head(5)
print(top_movies[['title', 'box_office']])
# Load financial data
stocks_df = pd.read_sql_query("SELECT * FROM stocks", conn)
stocks_table = lotus.Table.from_dataframe(stocks_df, name="stocks", llm=llm)
# Apply semantic filter
filtered_stocks = stocks_table.sem_filter(
"sector is technology and revenue growth last quarter above 20% and P/E ratio below 15"
)
print(filtered_stocks[['company_name', 'revenue_growth', 'pe_ratio']])
.06
# Assuming patient_data_table is a LOTUS table
filtered_patients = patient_data_table.sem_filter(
"age between 50 and 60 and underwent Procedure X"
)
average_recovery = filtered_patients['recovery_time'].mean()
print(f"Average Recovery Time: {average_recovery} days")
# Assuming customers_table is a LOTUS table
high_value_customers = customers_table.sem_filter(
"purchases over $1,000 last month and high engagement"
)
print(high_value_customers[['customer_id', 'total_purchases', 'engagement_score']])
.07
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-30
EraRAG:突破传统GraphRAG限制,实现动态语料库的高效检索增强生成
2025-06-30
GraphRAG的索引动态更新解法-分桶+局部更新及“上下文工程”新概念?
2025-06-30
RAG搭建个人LLM知识库助手,很多人第一步就走错了...
2025-06-29
你的RAG系统安全么?
2025-06-28
Dify+RAG合同生成:条款级工作流案例拆解
2025-06-28
RAG工程落地:处理文档中表格数据
2025-06-27
为什么你的RAGFlow需要一个 Markdown 预览器(油猴脚本方案)
2025-06-26
RAG 2.0:构建具备显式推理能力的金融RAG系统实战手册
2025-04-13
2025-04-19
2025-04-09
2025-04-16
2025-05-08
2025-04-05
2025-04-23
2025-04-08
2025-04-10
2025-04-09