微信扫码
添加专属顾问
我要投稿
今天分享的是解决检索增强生成系统中预检索信息差距的一个方法:ERRR。
论文链接: https://arxiv.org/pdf/2411.07820v1
01
简介
02
框架
ERRR 的整体框架如上图 (iii) 所示,其主要由参数知识提取 (Parametric Knowledge Extraction)、查询优化 (Query Optimization)、检索 (Retrieval) 和生成 (Generation) 这四部分组成。下面详细介绍每一组成部分。
方法:使用直接提示,让LLM生成包含与原始查询相关的背景信息的伪上下文文档。
本地密集检索系统: 例如 Dense Passage Retrieval (DPR)。
目标:使用LLM根据检索到的文档和原始查询生成最终答案。
03
总结
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-12-07
Embedding模型选型思路:相似度高不再代表检索准确(文末附实战指南)
2025-12-06
Palantir Ontology 助力AIP Agent落地工具介绍:Object Query
2025-12-05
把AI记忆做好,是一个价值6千亿美元的市场
2025-12-05
我错了,RAG还没完!AI记忆的结合会成为下一个技术风口
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-09-16
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10