微信扫码
添加专属顾问
我要投稿
特性 | RAG | 微调 (Fine-tuning) |
---|---|---|
实现难度 | 较低:无需修改模型,只需构建检索和数据管道 | 较高:需要训练大模型并可能增加计算成本 |
数据更新 | 实时更新:数据变化无需重新训练 | 需要重新训练或微调模型 |
灵活性 | 高:可动态适配不同任务和领域 | 较低:适合特定任务或领域的模型 |
成本 | 较低:无需高性能硬件即可运行 | 较高:训练过程耗费大量计算资源 |
生成质量 | 中等:依赖于检索系统的性能 | 较高:通过定制化训练生成更精准的答案 |
适用场景 | 数据快速变动、跨领域任务 | 固定领域、需要高精度回答的场景 |
挑战 | 检索相关性、幻觉现象(Hallucination) | 训练数据需求大、可能存在灾难性遗忘(Catastrophic Forgetting) |
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-30
聊聊AI智能体框架MetaGPT下的RAG实践
2025-04-30
如何用大模型+RAG给宠物做一个AI健康助手(干货分享)?
2025-04-30
HiRAG:基于层级知识索引和检索的高精度RAG
2025-04-29
教程|通义Qwen 3 +Milvus,混合推理模型才是优化RAG成本的最佳范式
2025-04-29
RAG开发框架LangChain与LlamaIndex对比解析:谁更适合你的AI应用?
2025-04-29
RAG性能暴增20%!清华等推出“以笔记为中心”的深度检索增强生成框架,复杂问答效果飙升
2025-04-29
超神了,ChatWiki 支持GraphRAG,让 AI 具备垂直深度推理能力!
2025-04-29
AI 产品思维:我如何把一个 AI 应用从基础 RAG 升级到 multi-agent 架构
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-30
2025-04-29
2025-04-29
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20