微信扫码
添加专属顾问
我要投稿
掌握 DeepSeek-R1 模型,开启本地部署与知识库构建新篇章。 核心内容: 1. DeepSeek-R1 模型的本地部署详细流程 2. UltraRAG 框架的细节与功能介绍 3. VanillaRAG 与 Adaptive-Note 在法律领域问答的实际效果对比
VanillaRAG:是最基础的 RAG(Retrieval-Augmented Generation,检索增强生成)架构,通常指的是未经优化或改进的标准 RAG 方法。它的基本流程包括:查询构造(Query Formation)、检索(Retrieval)、生成(Generation) Adaptive-Note: 一种用于复杂问答任务的自适应笔记增强 RAG 方法,采用 检索-记忆(Retriever-and-Memory) 机制, iteratively 收集和优化知识结构。它通过自适应记忆复审和任务导向生成提高知识交互质量,并采用基于笔记的探索终止策略确保信息充分获取,以提升答案质量。论文: https://arxiv.org/abs/2410.08821
docker-compose up --build -d
#创建conda环境conda create -n ultrarag python=3.10#激活conda环境conda activate ultrarag安装相关依赖pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
vllm serve DeepSeek-R1-Distill-Qwen-14B --gpu-memory-utilization 0.8 --dtype auto --api-key token-abc123
nohup vllm serve DeepSeek-R1-Distill-Qwen-14B --gpu-memory-utilization 0.8 --dtype auto --api-key token-abc123 &
streamlit run ultrarag/webui/webui.py --server.fileWatcherType none
这里附上超详细视频教程,可以对照细节一步步上手:
以上全部功能,都可以直接通过 web 前端快速实现。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-03-16
Embedding、向量模型怎么选?知识库准不准还得看它
2025-03-16
RAG中的chunk质量如何评分?HiRAG对GraphRAG的改进思路及推理大模型用于机器翻译
2025-03-16
大白话讲解: Agent、 LLM 、RAG 、提示词工程
2025-03-15
什么是RAG?大模型和RAG有什么关系?
2025-03-15
RAG效果差竟因文本切片!深入理解LangChain4J NLP方案
2025-03-15
NLP+图技术:如何低成本打造高效GraphRAG应用?
2025-03-15
使用 Ollama 本地模型与 Spring AI Alibaba 的强强结合,打造下一代 RAG 应用
2025-03-14
一文学会基于LangChain开发大模型RAG知识问答应用
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07