微信扫码
添加专属顾问
我要投稿
快速构建DeepSeek测试用例生成系统,提升软件测试专业度。 核心内容: 1. 知识库在AI生成测试用例中的重要性 2. 系统架构及关键技术点解析 3. 知识库构建和增强检索引擎的实现细节
之前分享过两篇8分钟系列DeepSeek赋能软件测试的文章,吸引了很多志同道合的同学们的讨论,基于前面的文章,我们已构建了基础测试用例生成能力。今天主要聊一下知识库。
8分钟打造一个DeepSeek加持的测试用例工具
北极星学派,公众号:北极星学派 Polaris School8分钟打造一个DeepSeek加持的测试用例工具
8分钟打造一个DeepSeek API智能测试引擎:当咖啡还没凉,测试报告已出炉
北极星学派,公众号:北极星学派 Polaris School8分钟打造一个DeepSeek API智能测试引擎:当咖啡还没凉,测试报告已出炉
本系统在此基础上引入知识库增强生成(RAG)技术,通过融合领域文档与历史用例数据,使生成结果更贴合业务场景。
传统AI生成方案存在两大痛点:
本系统通过轻量化RAG架构(无需向量数据库)实现:
创新点:
设计考量:
增强策略:
检索增强生成(Retrieval-Augmented Generation)通过以下流程提升生成质量:
用户问题 → 知识检索 → 提示词增强 → 大模型生成 → 结果输出
与传统生成的区别:
尽管向量数据库(如ChromaDB)在RAG中广泛应用,但本系统选择TF-IDF+CSV文件存储方案,原因包括:
适合场景:
sk-xxxx
格式密钥headers = {"Authorization": "Bearer sk-xxxx"}
上传领域文档:
生成增强用例:
结果导出:
pythonpd.DataFrame(new_cases).to_excel("output.xlsx")
检索时优先高等级知识片段
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-30
聊聊AI智能体框架MetaGPT下的RAG实践
2025-04-30
如何用大模型+RAG给宠物做一个AI健康助手(干货分享)?
2025-04-30
HiRAG:基于层级知识索引和检索的高精度RAG
2025-04-29
教程|通义Qwen 3 +Milvus,混合推理模型才是优化RAG成本的最佳范式
2025-04-29
RAG开发框架LangChain与LlamaIndex对比解析:谁更适合你的AI应用?
2025-04-29
RAG性能暴增20%!清华等推出“以笔记为中心”的深度检索增强生成框架,复杂问答效果飙升
2025-04-29
超神了,ChatWiki 支持GraphRAG,让 AI 具备垂直深度推理能力!
2025-04-29
AI 产品思维:我如何把一个 AI 应用从基础 RAG 升级到 multi-agent 架构
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-30
2025-04-29
2025-04-29
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20