微信扫码
添加专属顾问
我要投稿
MCP协议如何让LLM从"空谈家"变"实干派",以及为何现实项目中Tool成为主角。 核心内容: 1. MCP三大核心概念:Resources、Tools和Prompts的详细拆解 2. Tool在现实项目中的优势和局限性分析 3. Prompts和Resources的潜力与生态成熟度探讨
核心作用:
典型场景:
"Resources让LLM不再依赖训练数据,而是随时调用最新信息。"
略过但关键:
# MCP协议定义的Tool(YAML格式)
- name: "send_email"
endpoint: "http://api.example.com/mail"
params: ["recipient", "subject", "content"]
"Tools是LLM的'双手',把'我想发邮件'变成实际动作。"
特殊之处:
"你是一名客服,请用友好语气回答关于{product}的问题,参考{resources},最后询问用户是否需要进一步帮助。"
prompt = get_prompt("客服模板", product="iPhone15", resources="最新产品手册")
为什么归入MCP协议
{{call tool=search_docs}},直接触发工具调用。"Prompts是LLM的'台词本',把自由发挥变成可控的工业化生产。"
核心结论:
理论:预定义交互模板,让 LLM 按剧本走。 ? 现实:
✅ Tool 替代方案:
def generate_response(prompt_template, **kwargs):
return llm.run(prompt_template.format(**kwargs))
理论:动态数据源,让 LLM 实时获取最新信息。 ? 现实:
def query_knowledge_base(question):
docs = vector_db.search(question)
return format_docs(docs)
customer_service_prompt)。query_latest_news)。客服话术模板、代码审查模板 等,直接调用,不用重复写。总结:
(所以,别纠结,先用 Tool 莽穿一切! ?)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-28
多少做RAG的人,连分词都搞不定? Milvus Analyzer指南
2025-10-28
先分块再向量化已经过时!先embedding再chunking才是王道
2025-10-28
AI检索增强中路由模型的使用
2025-10-28
HybRAG:混合文本和知识图谱的RAG框架
2025-10-28
“生成幻觉”(Hallucination)和“知识时效性”不足引发的架构范式变革
2025-10-27
RAG优化技巧
2025-10-26
关于RAG系统在多轮对话中的问题改写(优化)方法—使用历史记录改写问题
2025-10-26
你的RAG知识库,真的“喂”对数据了吗?拆解dify分段策略,告别无效召回
2025-09-15
2025-09-02
2025-08-05
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-09-08
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20