微信扫码
添加专属顾问
我要投稿
MCP协议如何让LLM从"空谈家"变"实干派",以及为何现实项目中Tool成为主角。 核心内容: 1. MCP三大核心概念:Resources、Tools和Prompts的详细拆解 2. Tool在现实项目中的优势和局限性分析 3. Prompts和Resources的潜力与生态成熟度探讨
核心作用:
典型场景:
"Resources让LLM不再依赖训练数据,而是随时调用最新信息。"
略过但关键:
# MCP协议定义的Tool(YAML格式)
- name: "send_email"
endpoint: "http://api.example.com/mail"
params: ["recipient", "subject", "content"]
"Tools是LLM的'双手',把'我想发邮件'变成实际动作。"
特殊之处:
"你是一名客服,请用友好语气回答关于{product}的问题,参考{resources},最后询问用户是否需要进一步帮助。"
prompt = get_prompt("客服模板", product="iPhone15", resources="最新产品手册")
为什么归入MCP协议
{{call tool=search_docs}},直接触发工具调用。"Prompts是LLM的'台词本',把自由发挥变成可控的工业化生产。"
核心结论:
理论:预定义交互模板,让 LLM 按剧本走。 ? 现实:
✅ Tool 替代方案:
def generate_response(prompt_template, **kwargs):
return llm.run(prompt_template.format(**kwargs))
理论:动态数据源,让 LLM 实时获取最新信息。 ? 现实:
def query_knowledge_base(question):
docs = vector_db.search(question)
return format_docs(docs)
customer_service_prompt)。query_latest_news)。客服话术模板、代码审查模板 等,直接调用,不用重复写。总结:
(所以,别纠结,先用 Tool 莽穿一切! ?)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-12-07
Embedding模型选型思路:相似度高不再代表检索准确(文末附实战指南)
2025-12-06
Palantir Ontology 助力AIP Agent落地工具介绍:Object Query
2025-12-05
把AI记忆做好,是一个价值6千亿美元的市场
2025-12-05
我错了,RAG还没完!AI记忆的结合会成为下一个技术风口
2025-09-15
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10