微信扫码
添加专属顾问
我要投稿
RAG技术如何抵御新模型挑战,持续在AI领域占有一席之地。 核心内容: 1. RAG技术的初衷与目标:结合参数化和非参数化记忆 2. RAG如何解决生成式语言模型的固有缺陷 3. 尽管新模型不断涌现,RAG在人工智能领域的必要性依然存在
每隔几个月,人工智能领域就会经历类似的模式。一个具有更大上下文窗口的新模型问世,社交媒体上便会充斥着“RAG 已死”的宣言。Meta 最近的突破再次引发了这场讨论——Llama 4 Scout 惊人的 1000 万(理论上)token 上下文窗口代表着一次真正的飞跃。
RAG 的初衷
为什么我们仍然需要 RAG(并且永远需要)
警惕错误的二分法
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-28
Semantic Kernel内存管理系统——为AI注入持久记忆与上下文感知能力
2026-01-28
AgentSkills 揭示的真相:上下文工程走错了三年
2026-01-25
Langgraph从零开始构建第一个Agentic RAG 系统
2026-01-24
大模型在需求分析与设计中的提效实践
2026-01-23
GraphRAG:让 RAG 看见"关系网络"的技术进化
2026-01-22
企业级 AI 知识库问答,是不是面子工程? – 是也不是
2026-01-21
SentGraph:一句一句把多跳RAG“画”成图
2026-01-21
增强型RAG还是Agentic RAG?一场关于检索增强生成系统的全面对比实验
2025-10-31
2025-12-04
2025-12-03
2025-11-04
2025-11-13
2025-12-02
2025-11-13
2025-11-05
2025-11-06
2025-12-07
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23