微信扫码
添加专属顾问
我要投稿
分阶段处理流程:ChatBI采用了一个创新的分阶段处理流程,该流程首先使用大型语言模型(LLMs)生成JSON格式的中间输出,然后将这些输出传递给BI中间件(如Apache SuperSet),以展示结果。这种方法与传统的直接依赖LLMs生成SQL的方法不同,它仅依赖于生成JSON。
复杂性解耦:通过将问题分解,ChatBI避免了LLMs直接处理SQL中的复杂语义、计算和比较关系。相反,LLMs只需要理解如何将这些复杂关系映射到JSON所需的输出。这种解耦方法简化了任务,提高了LLMs生成JSON的准确性。
虚拟列(Virtual Columns):ChatBI引入了虚拟列的概念,以处理那些需要从其他列计算得出的列,如“DAU”。虚拟列通过其对应的键(列名)来访问计算规则,这些规则存储在JSON中,称为JnM(Json nested Map)。这种方法允许LLMs生成包含复杂计算步骤的查询,同时提高了查询生成的效率。
模板和规则:在新的处理流程中,Apache SuperSet使用通用模板来生成SQL。LLMs生成的JSON输出充当填写这些模板的占位符,最终输出SQL。这种方法利用了数据库社区对基于维度和列生成SQL的广泛研究。
SRD数据集和MRD数据集介绍。主版本和轻量版本对应不同的应用程序。DAU代表日活跃用户,新用户指首次注册的用户。
Towards Natural Language to Complex Business Intelligence SQLhttps://arxiv.org/pdf/2405.00527
大模型(LLM)文章来锻炼我们的思维,简单的例子,不简单的方法,提升自己。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-13
蚂蚁数科宣布:支持企业客户按大模型应用效果付费
2025-09-13
阿里Qoder IDE进行AI辅助编程的简单验证
2025-09-13
Docling将pdf转markdown以及与AI生态集成
2025-09-13
Claude Code 为何如此强大?Anthropic 万字长文揭秘 AI Agent 工具开发五大“心法”
2025-09-12
从“代码补全”到“知识对齐”:Qoder Repo Wiki 迎来重磅升级
2025-09-12
基于智能体的自适应资损防控体系 - 淘工厂实践(二)
2025-09-12
运维老王:创业第十年,我用Elevo找回内心翻腾的梦想
2025-09-12
大模型可观测1-5-10:发现、定位、恢复的三层能力建设
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-06-19
2025-07-29
2025-09-08
2025-08-19
2025-08-20
2025-07-04
2025-09-12
2025-09-11
2025-09-11
2025-09-09
2025-09-09
2025-09-08
2025-09-08
2025-09-07