微信扫码
添加专属顾问
我要投稿
本篇基于Prompt-Flow和GPT-4o。
RAG(Retrieval-Augmented Generation)的两种选择:Chunk vs QA
覆盖率提升:使用Chunk检索能有效提高覆盖率,且噪声的影响较小。尽管此前认为QA是最佳方案,但Chunk的效果反而更好。
泛化问题:QA的泛化能力有限。一段200字的文本Chunk可能包含A、B、C三类信息,如果QA索引需要标注多种业务场景,成本会非常高。但Chunk检索可直接覆盖多个业务。
混合方案:可以同时使用Chunk和QA,或基于相似度进行筛选,但对最终效果的提升有限。
问题扩写与原问题检索并行
背景:用户常提出缺乏上下文的简短问题,如“你觉得呢?”、“推荐哪个?”这种问题无法直接检索,需要扩写成更完整的上下文问题。
方案:向量检索对完整问题效果更好,但在用户频繁变更话题或内容过长时,扩写可能出现误删或误改。因此,仅依赖扩写会提高大模型生成错误答案的风险。
解决方式:同时对原问题和扩写后的问题进行检索,将结果合并去重,再根据最终文本进行回答。
多业务流路由分发
背景:当核心Agent提示词过长时,可能出现逻辑矛盾,导致输出错误。
方案:使用路由Agent解耦核心节点,通过其他任务Agent生成的变量来填充核心Agent中的内容。特定任务仅在触发路由时执行,不干扰关键流程。
自动化测试
背景:自动化测试能够省时省力。
方案:构建测试流程,设置两个Flow之间的交互,通过历史会话检测业务漏洞。但要设置终止条件,避免无休止的对话循环。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-16
新版 GPT-5 刚刚发布,最卷 AI 连肝代码 7 小时,编程工具大洗牌开始了
2025-09-16
Subagents:构建高可靠 AI Coding 专家顾问团
2025-09-16
刚刚!阿里发新模型,幻觉率爆降70%
2025-09-16
Agent三大痛点:知识库+工作流+Prompt工程
2025-09-16
Anthropic发布首个AI经济指数报告:越富越用AI,企业比个人更信任AI
2025-09-16
Claude Code与GitHub结合使用的实践指南
2025-09-16
企业复杂Agent落地的12个工程化原则 | 原则二:构建Prompt工程可扩展、可维护、可调试、可回滚 | 提示词A/B实验
2025-09-16
OpenAI深夜放出「编程核弹」:GPT-5-Codex 正式发布,能独立爆肝7 小时
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-06-19
2025-07-29
2025-09-08
2025-08-19
2025-08-20
2025-07-04
2025-09-14
2025-09-12
2025-09-11
2025-09-11
2025-09-09
2025-09-09
2025-09-08
2025-09-08