微信扫码
添加专属顾问
我要投稿
AgentRun 通过动态下发和权限隔离技术,为 AI Agent 提供了前所未有的双向安全保障。核心内容: 1. 入站凭证管理:灵活控制外部访问权限,实现动态更新 2. 出站凭证机制:定时查询与缓存方案确保安全调用外部服务 3. 凭证库加密存储:彻底消除代码中的敏感信息泄露风险
在构建 Agent 应用时,凭证管理是一个容易被忽视但又极其重要的问题。一个典型的 Agent 应用会面临两个方向的凭证需求:向内,用户如何安全地调用你的 Agent?向外,Agent 如何安全地调用外部服务?
传统做法存在诸多问题。硬编码在代码里容易泄露且难以更新,存在配置文件中同样有安全风险,每次都手动传递不仅麻烦还容易出错,让大模型处理凭证更是巨大的安全隐患。更棘手的是,当凭证需要更新时(比如 API Key 过期、权限变更),如何在不重启服务的情况下动态更新?函数计算 AgentRun 的凭证管理系统就是为了解决这些问题而生。
入站凭证与出站凭证:双向安全保障
Cloud Native
函数计算 AgentRun 的凭证管理分为两个维度,分别解决“谁能调用我”和“我能调用谁”的问题。
入站凭证:控制谁能访问你的 Agent
入站凭证用于控制外部用户或系统如何访问你的 Agent 应用。当你创建一个 Agent 并对外提供服务时,需要确保只有授权的用户才能调用。函数计算 AgentRun 提供了灵活的入站凭证管理,可以为不同的调用方生成独立的凭证,设置不同的权限和配额,控制每个凭证能访问哪些 Agent、调用频率限制、有效期等。
由于所有请求都经过函数计算 AgentRun 网关,入站凭证可以实现真正的动态更新。比如你的 Agent 对外提供客服能力,可以为不同的业务部门生成不同的入站凭证,每个部门只能访问各自授权的 Agent。当某个部门的凭证泄露时,可以立即撤销并重新生成,所有变更在网关层实时生效,不影响其他部门的使用,也无需重启任何服务。
出站凭证:安全调用外部服务
出站凭证用于 Agent 访问外部服务时的身份认证。Agent 应用通常需要调用各种外部服务:大模型 API(OpenAI、Claude、Qwen 等)、数据库、第三方工具、企业内部系统等,每个服务都需要相应的凭证。传统方式下,开发者要么把这些凭证硬编码在代码里,要么通过环境变量传递,不仅不安全,更新时还需要重启服务。
函数计算 AgentRun 采用了一套巧妙的定时查询与缓存机制来管理出站凭证。所有出站凭证统一存储在加密的凭证库中,代码里不再出现任何敏感信息。Agent 启动时会从凭证库拉取所需的所有凭证并缓存到本地,运行过程中直接使用本地缓存,避免频繁的网络请求带来的性能开销。同时,系统会定期进行健康检查,主动查询凭证是否有更新,发现变更时只更新发生变化的凭证。如果健康检查失败,会自动重试,确保凭证始终可用。
这种定时查询方案带来了多重价值。从性能角度看,本地缓存避免了每次调用都查询凭证库,大幅降低了延迟和网络开销;从可用性角度看,即使凭证服务短暂不可用,缓存的凭证仍然可用,不会影响 Agent 的正常运行;从安全性角度看,定时健康检查确保凭证泄露或过期时能在几分钟内完成更新,而不需要等到下次部署。最关键的是,整个更新过程对 Agent 代码完全透明,开发者无需编写任何凭证更新逻辑,专注于业务实现即可。
这种最终一致性的设计在实践中被证明是最优的平衡:既保证了性能和可用性,又实现了凭证的动态更新能力。相比于每次都实时查询(性能差)或者只在启动时加载(更新不及时),定时查询方案在三者之间找到了最佳平衡点。
实际应用:工具和模型的凭证配置
Cloud Native
函数计算 AgentRun 的凭证管理在两个关键场景发挥作用,展示了从理论到实践的完整闭环。
场景一:大模型调用的凭证管理
当你的 Agent 需要调用多个大模型时,每个模型都需要各自的 API Key。以前你可能需要在代码里硬编码这些 Key,或者通过环境变量传递,但这样做存在安全风险且更新困难。有了函数计算 AgentRun 的凭证管理,你只需要在平台上配置各个模型的出站凭证,给每个凭证命名(如 openai_key、qwen_key),然后在 Agent 配置中引用这些凭证名称。
运行时系统会自动注入实际的 Key,你的代码里完全看不到任何敏感信息。当某个模型的 Key 过期需要更新时,只需在凭证管理界面更新,几分钟后所有使用该凭证的 Agent 会通过定时健康检查自动获取新的 Key,无需修改代码或重启服务。这种体验就像是有一个智能管家在后台默默地帮你管理所有的钥匙,你只需要告诉他你要开哪扇门。
# Agent 配置示例(伪代码)models:- name: gpt-4credential: ${credentials.openai_key} # 引用凭证名称,不暴露实际Key- name: qwen-maxcredential: ${credentials.qwen_key}
场景二:工具调用的凭证注入
回到之前提到的 FunctionQ 案例,这是一个更复杂但也更能体现凭证管理价值的场景。Agent 需要通过 MCP 调用 CLI 工具查询用户的函数计算资源,这些工具需要用户的 AccessKey 和 SecretKey。关键问题是:如何在不暴露凭证给大模型的前提下,让工具能够正确调用 API?
函数计算 AgentRun 通过前置 Hook 实现了优雅的动态凭证注入。用户在平台上配置自己的出站凭证后,Agent 调用工具时请求中只携带用户 ID,不包含任何凭证信息。前置 Hook 拦截请求,根据用户 ID 从凭证库获取对应的凭证,然后将凭证注入到环境变量或请求参数中。工具使用注入的凭证执行实际操作,后置 Hook 再清理敏感信息并记录审计日志。整个过程中,凭证从未暴露给大模型,也不会出现在 Agent 的代码中,真正做到了安全可控。
核心价值:让开发者专注业务逻辑
Cloud Native
函数计算 AgentRun 的凭证管理系统带来的价值远不止“管理凭证”这么简单。从安全性角度看,凭证不再出现在代码和日志中,集中加密存储大幅降低泄露风险,即使某个凭证泄露也可以快速撤销和更换。从开发效率角度看,开发者不需要关心凭证如何存储、如何传递、如何更新,只需在配置中引用凭证名称,系统自动处理剩下的事情。从运维角度看,凭证更新不需要修改代码、不需要重新部署、不需要重启服务,在管理界面更新后通过定时机制自动生效。
更重要的是,凭证管理让 Agent 应用从“能用”变成“敢用”。企业不再担心凭证泄露的风险,不再为凭证更新而头疼,不再因为安全问题而犹豫是否将 Agent 应用部署到生产环境。这种信心的建立,才是凭证管理最大的价值所在——它消除了企业拥抱 AI Agent 的最后一道顾虑,让技术真正为业务创造价值。
立即体验函数计算 AgentRun
Cloud Native
函数计算 AgentRun 的无代码到高代码演进能力,现已开放体验:
查看更多产品详情:https://www.aliyun.com/product/fc/agentrun
从想法到上线,从原型到生产,函数计算 AgentRun 始终是你最好的伙伴。欢迎加入“函数计算 AgentRun 客户群”,钉钉群号:134570017218。
快速了解函数计算 AgentRun:
一句话介绍:函数计算 AgentRun 是一个以高代码为核心的一站式 Agentic AI 基础设施平台。秉持生态开放和灵活组装的理念,为企业级 Agent 应用提供从开发、部署到运维的全生命周期管理。
函数计算 AgentRun 架构图
函数计算 AgentRun 运行时基于阿里云函数计算 FC 构建,继承了 Serverless 计算极致弹性、按量付费、零运维的核心优势。通过深度集成 AgentScope、LangChain、RAGFlow、Mem0 等主流开源生态。函数计算 AgentRun 将 Serverless 的极致弹性、零运维和按量付费的特性与 AI 原生应用场景深度融合,助力企业实现成本与效率的极致优化,平均 TCO 降低 60%。
让开发者只需专注于 Agent 的业务逻辑创新,无需关心底层基础设施,让 Agentic AI 真正进入企业生产环境。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-20
上手谷歌的UI设计与前端生成AI产品——Stitch
2026-01-20
SubAgent 与 Skills:AI Agent 的两种扩展方式
2026-01-20
【万字长文】Claude Skills完全指南:从概念到实战
2026-01-20
Claude Cowork与Mac的Automator
2026-01-20
千问“一句话买奶茶”背后:支付宝ACT定义跨智能体协同标准
2026-01-20
手机上也能用Claude Code和Codex!很方便,一键搞定
2026-01-19
了解你的 AI 编码伙伴:Coding Agent核心机制解析
2026-01-19
“推理”也解决不了的问题
2025-10-26
2025-11-19
2026-01-10
2025-11-13
2025-11-03
2025-10-23
2025-11-12
2025-11-21
2025-11-15
2026-01-01
2026-01-12
2026-01-12
2026-01-11
2026-01-10
2026-01-10
2026-01-08
2026-01-02
2025-12-31