免费POC, 零成本试错
AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


我要投稿

群体智能到来:浅谈Kimi K2.5之Agent Swarm

发布日期:2026-01-30 04:45:51 浏览次数: 1520
作者:为AI发电

微信搜一搜,关注“为AI发电”

推荐语

Kimi 2.5突破传统AI局限,通过智能体集群协作实现任务处理效率的飞跃式提升。

核心内容:
1. Agent Swarm技术原理:从单智能体到100个并行子智能体的架构革新
2. 指挥官模式与PARL算法:动态任务拆解与智能调度的核心技术
3. 实际应用场景:复杂任务处理效率提升80%的突破性表现

杨芳贤
53AI创始人/腾讯云(TVP)最具价值专家

0/ 前言: Scaling Out, Not Up!

以上是一天前Kimi在AMA活动上,杨植麟就Scaling Law撞墙这个话题的分享:

- 传统 Scaling 受限于高质量语料枯竭,而 Agent Swarm 通过并行增加执行任务的智能体数量开辟新维度,即不再只追求模型更大,而是让智能体作为集群协作。

- 这本质上是Test-time Compute 的新形态:面对复杂任务,系统动态生成 100 个子智能体并行运算,用算力换取深度(更多思考路径)和广度(更多信息源),而非单纯依赖预训练参数的增量。

就在本周Kimi发布的Kimi 2.5中,Kimi就宣布了2.5中的全新探索:Agent 集群;从单一 Agent 进化到了 Agent 集群:
“面对复杂任务,K2.5 不再是一个包揽一切的「全能专家」,而是化身为一支即时组建的「专业团队」。它能根据任务需求,现场调度多达 100 个分身,并行处理 1500 个步骤。所有的角色分配与任务拆解,无需预设,全由 K2.5 现场决策。”


本文我们就来浅谈下Kimi 2.5中的agent集群长什么样子。

1/ 技术定义与核心参数

Agent Swarm 是一种基于多智能体协作的分布式任务处理架构

与传统单体 AI 的串行处理模式不同,该技术实现了任务级别的并行化拆解与执行。

其核心技术指标包括:

  • 并发规模:支持同时调度 100 个子智能体(sub-agents)协同工作
  • 调用密度:单次任务可发起高达 1500 次并行工具调用(Parallel Tool Calls)
  • 性能增益:端到端任务执行时间最高缩短 4.5 倍,整体效率提升 80%

Agent Swarm 代表的不是速度的简单提升,而是任务处理范式的结构性转变。

二、架构机制:指挥官模式与 PARL

Kimi 2.5 的 Agent Swarm 采用"指挥官-执行者"(Orchestrator-Worker)架构。系统接收到复杂任务后,中央智能体(Orchestrator)基于 PARL(Parallel-Agent Reinforcement Learning,并行智能体强化学习)算法,自主完成三个关键步骤:

首先,动态任务拆解。系统无需预定义工作流,即可将复杂目标分解为若干独立子任务。例如,在"分析 100 家竞品定价策略"的任务中,系统自动识别出数据获取、清洗、交叉验证、格式统一等并行化模块。

其次,角色动态分配。根据子任务特性,系统生成具备特定能力的子智能体(如网络检索专员、数据清洗专员、异常检测专员等),实现专业化分工。

最后,容错与重组机制。当某一子智能体因网络波动或数据源异常导致任务失败时,指挥官节点自动触发重新调度,确保整体任务的鲁棒性。这种"防串行崩溃"机制是集群架构相较于简单多线程的关键优势。

三、产品演进与应用场景

在此次发布的 Kimi 2.5 实际上提供了四阶能力模型:

  1. Instant 模式:即时响应,适用于标准化问答
  2. Thinking 模式:深度推理,处理需要逻辑链分析的复杂问题
  3. Agent 模式:工具调用,支持单线性的多步骤任务执行
  4. Agent Swarm 模式:集群协作,应对大规模、高并发的复杂研究任务


在实际商业场景中,Agent Swarm 展现出显著优势。以市场情报收集为例:传统单体 AI 需顺序访问 100 个竞争者的公开信息源,耗时数小时且易因单点故障中断;而在 Swarm 架构下,100 个子智能体同时发起数据请求,经并行处理后汇总,全程仅需数分钟。

四、行业意义:从模型 Scaling 到 Agent Scaling

英伟达 CEO 黄仁勋近期指出,Swarm Intelligence(集群智能)将是下一个万亿级产业的技术基石。这一判断揭示了 AI 发展的重要转向:行业竞争焦点正从单一模型的参数规模(Model Scaling)转向智能体的协同规模(Agent Scaling)。

对组织而言,Agent Swarm 带来的核心价值在于复杂任务交互成本的指数级下降。过往需要组建临时团队、跨部门协调的研究分析工作,现在可通过单一接口完成。决策者得以绕过传统的人力组织成本,直接调度 AI 集群完成信息整合与初步分析。


写在最后:

今天使用Kimi做了一个case,是让Kimi基于的Agent Swarm功能帮我写一篇Substack文章。这篇文章最后发表在这里:https://openyourai.substack.com/p/how-ai-is-redefining-hearing-aids。还是非常惊艳。

当 AI 从单一工具进化为可编排的组织单元,人类与智能系统的协作关系将进入新的阶段。

Agent Swarm很可能是一个加速器,让人类与AI的合作范式更加成形。

53AI,企业落地大模型首选服务商

产品:场景落地咨询+大模型应用平台+行业解决方案

承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

添加专属顾问

回到顶部

加载中...

扫码咨询