微信扫码
添加专属顾问
我要投稿
在基于网络的长形式问答(Web-enhanced Long-form Question Answering, LFQA)任务中,现有RAG在生成答案时存在的问题:
事实性不足:研究表明,现有系统生成的答案中只有大约一半的陈述能够完全得到检索到的参考资料的支持,这严重影响了这些系统的可信度。
清晰逻辑的缺失:与短答案的传统问答任务不同,LFQA任务中理想的答案往往需要多方面组织和整合信息,但现有的开源方法在生成答案时往往缺乏清晰的逻辑结构。
提出提纲增强RAG,以改善长形式问题回答 LFQA 中生成答案的结构和质量。
现有的开源方法在生成答案时,通常是直接将检索到的内容与原始查询拼接,然后使用特定的提示模板(prompt template)输入到生成模型中。这种方法生成的答案往往较短,缺乏清晰的逻辑结构。为了提高答案的组织性,提出了 "Outline-Enhanced Generator",它包含以下两个阶段:
Outline Stage(提纲阶段):
在此阶段,生成器首先使用提纲模板,根据用户查询和上下文生成答案的提纲。提纲模板引导大型语言模型(LLM)考虑哪种组织模式最适合当前问题,例如“因果关系”或“比较对比”。然后,LLM根据选定的组织模式输出提纲,为后续的扩展阶段做准备。
Expansion Stage(扩展阶段):
基于前一阶段生成的提纲,LLM扩展每个要点,构建最终答案。模型被要求在包含查询、上下文和提纲的输入下,生成对问题的答案。
注:提纲增强阶段的生成器有SFT训练得到。
为了支持 "Outline-Enhanced Generator" 的训练和评估,构建了两个大规模的提纲增强型LFQA数据集。这些数据集利用现有的WebCPM和WebGLM数据集的查询和相关段落,并通过GPT4模型应用提纲增强生成技术来收集提纲增强型答案。统计信息显示,使用提纲增强技术生成的答案比现有工作中的答案更长,其具有更强的逻辑结构。
英文提示词
中文提示词
小结:通过引入提纲阶段来增强生成答案的逻辑结构,并通过扩展阶段来完善和详细化答案内容,从而提高了长形式问题回答的质量。
传统的RLHF,优化事实性所面临困难如下:
因此,提出了一种新颖的事实性优化方法(Doubly Fine-grained RLHF),旨在解决网络增强型 LFQA 中的事实性问题。
提出了一种新的事实性优化框架,通过在评估和奖励建模中采用细粒度的设计,有效地提高了长形式问题回答中生成答案的事实性,同时减少了对人工标注的依赖。
奖励模型训练:使用Logloss或MSE损失函数来训练奖励模型,具体取决于评估过程中得到的是二元标签还是连续值奖励。
PPO优化:采用近端策略优化(Proximal Policy Optimization, PPO)来优化生成模型,通过最大化细粒度的奖励信号来改善模型性能。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-14
AI开发实战:解决RAG的召回不准问题
2025-06-13
揭开RAG的神秘面纱:90%的人不知道腾讯IMA底层原理
2025-06-13
金融智脑:破解RAG系统在金融场景中常见失败的七大陷阱
2025-06-13
从零开始学 Dify - Dify 的 RAG 系统如何有效地处理和检索大量文档?
2025-06-13
大模型:多种RAG组合优化(langchain实现)
2025-06-12
深入使用 Deep Research 后,我确信 RAG 的未来是 Agent
2025-06-12
从传统 RAG 到知识图谱 + Agent,知识库 AI 问答成功率终于达到 95% 了,来自蚂蚁集团的经验
2025-06-12
GraphRAG变种这么多,该采用哪种?九大GraphRAG评估参考
2025-03-21
2025-03-20
2025-03-24
2025-03-17
2025-03-24
2025-03-19
2025-03-24
2025-03-28
2025-04-01
2025-03-23
2025-06-13
2025-06-09
2025-06-06
2025-05-30
2025-05-29
2025-05-29
2025-05-23
2025-05-16