微信扫码
添加专属顾问
我要投稿
在TriviaQA上的任务指令I下,基础版与指导+模板版之间的比较。该图展示了两个版本的Llama 2 7B模型生成的回答之间的比较:基础版和指导+模板版。每个版本都被赋予了基于提供文档回答同一问题的任务。基础模型正确地识别出答案为“Burgess Meredith”,而指导+模板版错误地将答案归因于“Danny DeVito”。斜体文本表示模板
在TriviaQA上的任务指令II下,基础版与指导+模板版之间的比较。这种比较展示了Llama 2 7B的基础版和指导+模板版生成的回答之间的一个例子,其中基础模型正确地识别了答案,而指导+模板版错误地将答案归因于不同的演员。尽管如此,在两种情况下,答案都与证据“一致”,因为每项证据都包含了生成的答案。斜体文本表示模板。
图6:在NQ上,任务指令I下的基础版与指导版,不允许拒绝回答。这张图展示了在不允许拒绝回答的设置下的回答情况,即模型不需要在检索文档中不包含答案时回答NO-RES。它比较了Falcon 7B的基础版和指导版。基础模型准确地识别出“Rocky”(洛奇)是1976年奥斯卡最佳影片奖的获奖者,而指导版错误地引用了“Network”(电视台)。
在整个RAG流程中,除了Generation,还涉及Embedding、Indexing等等,PaperAgent团队RAG专栏进行过详细的归纳总结:高级RAG之36技(术),可私信留言试看:RAG专栏。
A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systemshttps://arxiv.org/pdf/2406.14972https://github.com/florin-git/Base-vs-Instruct-LLMs-in-RAG-Systems
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-14
什么是RAG?一文搞懂检索增强生成技术
2025-06-14
AI开发实战:解决RAG的召回不准问题
2025-06-13
揭开RAG的神秘面纱:90%的人不知道腾讯IMA底层原理
2025-06-13
金融智脑:破解RAG系统在金融场景中常见失败的七大陷阱
2025-06-13
从零开始学 Dify - Dify 的 RAG 系统如何有效地处理和检索大量文档?
2025-06-13
大模型:多种RAG组合优化(langchain实现)
2025-06-12
深入使用 Deep Research 后,我确信 RAG 的未来是 Agent
2025-06-12
从传统 RAG 到知识图谱 + Agent,知识库 AI 问答成功率终于达到 95% 了,来自蚂蚁集团的经验
2025-03-21
2025-03-20
2025-03-24
2025-03-17
2025-03-24
2025-03-19
2025-03-24
2025-03-28
2025-04-01
2025-03-23
2025-06-13
2025-06-09
2025-06-06
2025-05-30
2025-05-29
2025-05-29
2025-05-23
2025-05-16