微信扫码
添加专属顾问
我要投稿
表格展现了HotpotQA开发集上的问答(QA)结果。结果与三组基线模型进行了比较:闭卷模式,此模式下直接向最前沿的大型语言模型(LLMs)提供16个上下文示例进行提示;全监督RAG,在此模式下,使用RAG框架,并对模型进行全监督训练,确保模型在训练数据上得到充分训练;以及无微调RAG,该模式下虽然采用RAG框架,但未对模型进行任何微调。
参考:
1.https://github.com/TIGER-AI-Lab/LongRAG/
2.https://arxiv.org/abs/2406.15319
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-11-10
Dify x Oracle Database 26ai 深度集成,打造企业级 RAG 应用
2025-11-10
从朴素 RAG 到 Agentic RAG的五阶段:静态线性流程升级为智能自主系统
2025-11-07
RAG处理长文本中的上下文复用思路及SmartResume简历解析系统方案
2025-11-06
RAG已经过时了?试试CAG,缓存增强生成技术实战大揭秘!
2025-11-06
Zero-RAG,对冗余知识说“不”
2025-11-06
RFT目前(在应用层)仍然是被低估的
2025-11-05
从 RAG 到 Agentic RAG,再到 Agent Memory:AI 记忆的进化三部曲
2025-11-05
万字详解Naive RAG超进化之路:Pre-Retrieval和Retrieval优化
2025-09-15
2025-09-02
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-09-08
2025-08-20
2025-08-28
2025-11-04
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25