微信扫码
添加专属顾问
我要投稿
表格展现了HotpotQA开发集上的问答(QA)结果。结果与三组基线模型进行了比较:闭卷模式,此模式下直接向最前沿的大型语言模型(LLMs)提供16个上下文示例进行提示;全监督RAG,在此模式下,使用RAG框架,并对模型进行全监督训练,确保模型在训练数据上得到充分训练;以及无微调RAG,该模式下虽然采用RAG框架,但未对模型进行任何微调。
参考:
1.https://github.com/TIGER-AI-Lab/LongRAG/
2.https://arxiv.org/abs/2406.15319
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-16
基于大模型的智能问答场景解决方案——RAG提升召回率的关键
2025-10-16
用合成数据评测 RAG 系统:一份可直接上手的 DeepEval 实操指南
2025-10-16
2025 年 RAG 最佳 Reranker 模型
2025-10-16
HiRAG问答流程深入分析
2025-10-13
LightRAG × Yuxi-Know——「知识检索 + 知识图谱」实践案例
2025-10-13
PG用户福音|一次性搞定RAG完整数据库套装
2025-10-12
任何格式RAG数据实现秒级转换!彻底解决RAG系统中最令人头疼的数据准备环节
2025-10-12
总结了 13 个 顶级 RAG 技术
2025-09-15
2025-08-05
2025-09-02
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-09-08
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20