微信扫码
添加专属顾问
我要投稿
本文入选顶会IJCAI2024,京东技术团队联合清华大学提出缓解大模型“幻觉”新技术!
ChatGPT的横空出世标志着人工智能正式进入大模型时代,大模型也正逐步成为推动企业发展的新引擎。然而,大模型带来无与伦比创造力的同时,其“幻觉”,即“胡说八道”的坏毛病也让大批应用者苦不堪言。业内主要通过检索增强生成(RAG)技术,通过引入并检索第三方知识库缓解幻觉。但即便召回正确的信息,大模型依然可能因为自身幻觉生成错误结果,所以缓解大模型本身的幻觉也极其重要。
京东技术团队联合清华大学提出任务感知解码技术(Task-aware Decoding,TaD),通过对比有监督微调前后的输出,缓解LLM本身的幻觉;该方法通用性强,即插即用适应多种大模型结构、微调方法、下游任务。与此同时,项目团队在知识问答业务上进行落地实践,充分证明TaD+RAG是缓解LLM幻觉的最佳组合疗法。欢迎关注转发~
表3. 不同对比解码技术结果
- END -
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-15
RAG彻底爆了!一文掌握其效果优化的架构设计及核心要点
2025-09-12
Meta如何给RAG做Context Engineering,让模型上下文增加16倍
2025-09-12
检索器江湖:那些让RAG神功大成的武林绝学
2025-09-12
Dify + Oracle + MCP:轻松构建 RAG 与 MCP Agent 智能应用
2025-09-11
做好 RAG 落地最后环节 —— 评估 RAG 应用
2025-09-10
企业级RAG系统实战心得:来自10多个项目的深度总结
2025-09-10
您应该为您的 RAG 系统使用哪种分块技术?
2025-09-10
关于多模态应用的几个疑问,以及多模态应该怎么应用于RAG?
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-20
2025-07-08
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05