微信扫码
添加专属顾问
我要投稿
从现有候选文档集推断出模式。您可以选择稍后编辑此模式。
根据指定的模式(无论是从上一步推断出来的、由人类指定的,或两者兼有)从一组文档中提取值。
LlamaExtract 目前处于 beta 阶段,这意味着它是一个我们正在努力改进的实验性功能,使其更普遍可扩展和可用。请将任何问题报告到我们的 Github!
我们正在对 UI 进行一些核心改进,例如将模式推断和提取解耦,允许用户预定义模式等。有关更多灵活性,请查看下面的 API。
pip install llama-extract
pythonfrom llama_extract import LlamaExtract
extractor = LlamaExtract()
extraction_schema = extractor.infer_schema("Test Schema", ["./file1.pdf","./file2.pdf"])
from pydantic import BaseModel, Field
classResumeMetadata(BaseModel):
"""Resume metadata."""
years_of_experience: int= Field(..., description="Number of years of work experience.")
highest_degree: str= Field(..., description="Highest degree earned (options: High School, Bachelor's, Master's, Doctoral, Professional)")
professional_summary: str= Field(..., description="A general summary of the candidate's experience")
extraction_schema = extractor.create_schema("Test Schema", ResumeMetadata)
无论您如何获得模式,现在都可以执行提取:
extractions = extractor.extract(extraction_schema.id, ["./file3.pdf","./file4.pdf"])
您可以看到提取的数据:
print(extractions[0].data)
场景用例
简历:从候选人的个人资料中提取结构化注释,如学校、工作经历、工作经验年限。
收据和发票:提取行项目、总价和其他数字。
产品页面:根据用户定义的模式结构化和分类您的产品。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-16
基于大模型的智能问答场景解决方案——RAG提升召回率的关键
2025-10-16
用合成数据评测 RAG 系统:一份可直接上手的 DeepEval 实操指南
2025-10-16
2025 年 RAG 最佳 Reranker 模型
2025-10-16
HiRAG问答流程深入分析
2025-10-13
LightRAG × Yuxi-Know——「知识检索 + 知识图谱」实践案例
2025-10-13
PG用户福音|一次性搞定RAG完整数据库套装
2025-10-12
任何格式RAG数据实现秒级转换!彻底解决RAG系统中最令人头疼的数据准备环节
2025-10-12
总结了 13 个 顶级 RAG 技术
2025-09-15
2025-08-05
2025-09-02
2025-08-18
2025-08-25
2025-08-25
2025-07-21
2025-08-25
2025-09-03
2025-08-20
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20