微信扫码
添加专属顾问
我要投稿
检索增强生成简称RAG(Retrieval-augmented Generation),RAG为大语言模型安装了知识外挂,基础大语言模型不用训练,通过RAG技术与大语言模型结合在回答问题的时候,可以通过企业内部的知识库检索相关和最新的信息来生成内容,从而提高了回答问题的准确性、实时性和关联性。
01
02
—
03
—
产品电源
对目前行业中其他产品基于RAG的问答系统的检索方式进行调研。
混合检索:结合全文检索与语义检索的优势,并对结果进行综合排序;
语义检索:基于向量的文本相关性查询,推荐在需要理解语义关联度和跨语言查询的场景使用;
全文检索:依赖于关键词的全文搜索,推荐在搜索具有特定名称、缩写词、短语或ID的场景使用;
基于文档和知识库的RAG问答系统,在调研的产品中,通常会支持混合检索、向量检索和全文检索。作为平台用户可以选择使用哪种检索方式;
混合检索结合全文检索和向量检索的的优势,对召回的结果进行综合排序,让大模型生成的结果更好,也是各个平台优先推荐的;
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2026-01-28
Fusion GraphRAG:超越 GraphRAG 的多模态企业级 AI 问答
2026-01-28
Semantic Kernel内存管理系统——为AI注入持久记忆与上下文感知能力
2026-01-28
AgentSkills 揭示的真相:上下文工程走错了三年
2026-01-25
Langgraph从零开始构建第一个Agentic RAG 系统
2026-01-24
大模型在需求分析与设计中的提效实践
2025-12-04
2025-12-03
2025-11-04
2025-11-13
2025-12-02
2025-11-13
2025-11-05
2025-12-07
2025-11-06
2026-01-15
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23