微信扫码
添加专属顾问
我要投稿
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("./test/test_file1.txt")
docs = loader.load()
print(docs[0].page_content[:400])
from langchain.document_loaders import UnstructuredWordDocumentLoader
loader = UnstructuredWordDocumentLoader("example_data/fake.docx")
data = loader.load()
print(data)
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("./example_data/layout-parser-paper.pdf", mode="elements")
docs = loader.load()
print(docs[:5])
from langchain.document_loaders import PyPDFLoaderloader = PyPDFLoader("example_data/layout-parser-paper.pdf")pages = loader.load_and_split()
2.3.3 在线读取工具
在线加载PDF文档的方法。
python from langchain.document_loaders import OnlinePDFLoader loader = OnlinePDFLoader("https://arxiv.org/pdf/2302.03803.pdf") data = loader.load() print(data)2.3.4 PDFMiner
使用PDFMiner库来加载PDF文档。
python from langchain.document_loaders import PDFMinerLoader loader = PDFMinerLoader("example_data/layout-parser-paper.pdf") data = loader.load()from langchain.document_loaders import UnstructuredEmailLoader
loader = UnstructuredEmailLoader('example_data/fake-email.eml')
data = loader.load()
from langchain.document_loaders.image import UnstructuredImageLoader
loader = UnstructuredImageLoader("layout-parser-paper-fast.jpg")
data = loader.load()
loader = document_loaders.UnstructuredFileLoader(filepath, mode="elements", autodetect_encoding=True)
docs = loader.load()
from langchain.document_loaders import UnstructuredPowerPointLoader
loader = UnstructuredPowerPointLoader("example_data/fake-power-point.pptx")
data = loader.load()
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2026-01-28
Fusion GraphRAG:超越 GraphRAG 的多模态企业级 AI 问答
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2025-12-07
2025-11-06
2026-01-02
2025-12-23
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10