微信扫码
添加专属顾问
我要投稿
对应下来,离线部分就是基本操作+生成摘要
在线部分,传统的RAG流程,就只有红色的一条路径。然后多了一些模块,包括识别术语、确定上下文、查询术语字典、增强问题,最后就是检索文档,生成答案,提示词都在下边。
与LLM和普通的RAG方法相比,Golden-Retriever在多个LLM基座上平均提高了57.3%和35.0%的分数。而且,Golden-Retriever还能够有效地识别问题中的缩写,即使这些缩写是未知的。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-17
当“相似度 ≠ 相关性”:PageIndex 带来的 RAG 新范式
2025-09-17
解锁RAG高阶密码:自适应、多模态、个性化技术深度剖析
2025-09-16
你的 RAG 还在“垃圾进,垃圾出”?我用这套流程,把“废料”文档变成了黄金知识库
2025-09-15
应对知识管理挑战:RAG技术如何驱动企业智能化升级
2025-09-15
RAG彻底爆了!一文掌握其效果优化的架构设计及核心要点
2025-09-12
Meta如何给RAG做Context Engineering,让模型上下文增加16倍
2025-09-12
检索器江湖:那些让RAG神功大成的武林绝学
2025-09-12
Dify + Oracle + MCP:轻松构建 RAG 与 MCP Agent 智能应用
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-20
2025-07-08
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05