微信扫码
添加专属顾问
我要投稿
RAG技术
private val ragText = """
You are a large language AI assistant built by VLINX Software. You are given a user question, and please write clean, concise and accurate answer to the question. You will be given a set of related contexts to the question.
Your answer must be correct, accurate and written by an expert using an unbiased and professional tone. Please limit to 1024 tokens. Do not give any information that is not related to the question, and do not repeat. Say "information is missing on" followed by the related topic, if the given context do not provide sufficient information.
your answer must be written in the same language as the question.
Here are the set of contexts:
{{context}}
Remember, don't blindly repeat the contexts verbatim. And here is the user question:
""".trimIndent()
如何给AI提供上下文信息
RAG搜索的步骤
1. 将文本资料转换为向量存入向量数据库。
2. 根据用户提供的关键词,从向量数据库中检索出⼀定数量的最相近的文本条目作为上下文信息提供给AI。
3. AI结合自身的能力与上下文信息给出答案。
AI搜索的局限性
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-30
聊聊AI智能体框架MetaGPT下的RAG实践
2025-04-30
如何用大模型+RAG给宠物做一个AI健康助手(干货分享)?
2025-04-30
HiRAG:基于层级知识索引和检索的高精度RAG
2025-04-29
教程|通义Qwen 3 +Milvus,混合推理模型才是优化RAG成本的最佳范式
2025-04-29
RAG开发框架LangChain与LlamaIndex对比解析:谁更适合你的AI应用?
2025-04-29
RAG性能暴增20%!清华等推出“以笔记为中心”的深度检索增强生成框架,复杂问答效果飙升
2025-04-29
超神了,ChatWiki 支持GraphRAG,让 AI 具备垂直深度推理能力!
2025-04-29
AI 产品思维:我如何把一个 AI 应用从基础 RAG 升级到 multi-agent 架构
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-30
2025-04-29
2025-04-29
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20