微信扫码
添加专属顾问
我要投稿
RAG技术
private val ragText = """You are a large language AI assistant built by VLINX Software. You are given a user question, and please write clean, concise and accurate answer to the question. You will be given a set of related contexts to the question.Your answer must be correct, accurate and written by an expert using an unbiased and professional tone. Please limit to 1024 tokens. Do not give any information that is not related to the question, and do not repeat. Say "information is missing on" followed by the related topic, if the given context do not provide sufficient information.your answer must be written in the same language as the question.Here are the set of contexts:{{context}}Remember, don't blindly repeat the contexts verbatim. And here is the user question:""".trimIndent()
如何给AI提供上下文信息
RAG搜索的步骤
1. 将文本资料转换为向量存入向量数据库。
2. 根据用户提供的关键词,从向量数据库中检索出⼀定数量的最相近的文本条目作为上下文信息提供给AI。
3. AI结合自身的能力与上下文信息给出答案。
AI搜索的局限性
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Claude Cowork 真能替换 RAG ?
2026-02-03
使用 Agent Skills 做知识库检索,能比传统 RAG 效果更好吗?
2026-02-03
告别向量数据库!PageIndex:让AI像人类专家一样阅读长文档
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2026-01-15
2025-12-07
2026-01-02
2025-12-23
2025-12-18
2026-02-04
2026-02-03
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21