微信扫码
添加专属顾问
我要投稿
SimpleRAG是基于WPF与Semantic Kernel实现的一个简单的RAG应用,可用于学习与理解如何使用Semantic Kernel构建RAG应用。
GitHub地址:https://github.com/Ming-jiayou/SimpleRAG
支持所有兼容OpenAI格式的大语言模型:
支持所有兼容OpenAI格式的嵌入模型:
简单的RAG回答效果:
对比不使用RAG的回答:
git clone到本地,打开appsettings.example.json文件:
如下所示:
ChatAI用于配置对话模型,Embedding用于配置嵌入模型,TextChunker用于配置文档切片大小。
还是以SiliconCloud为例,只需填入你的api key 并将文件名改为appsettings.json,或者新建一个appsettings.json即可。
配置完成如下所示:
IDE:VS2022
.NET 版本:.NET 8
打开解决方案,项目结构如下所示:
运行程序:
测试AI聊天:
测试嵌入:
使用的是Sqlite保存向量,可以在Debug文件夹下找到这个数据库:
打开该数据库,如下所示:
测试RAG回答:
您还可以自由的进行其他配置,比如使用Ollama中的对话模型与嵌入模型用于本地离线场景,配置其他的在线对话模型,使用本地Ollama中的嵌入模型等。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2026-01-28
Fusion GraphRAG:超越 GraphRAG 的多模态企业级 AI 问答
2026-01-28
Semantic Kernel内存管理系统——为AI注入持久记忆与上下文感知能力
2026-01-28
AgentSkills 揭示的真相:上下文工程走错了三年
2026-01-25
Langgraph从零开始构建第一个Agentic RAG 系统
2026-01-24
大模型在需求分析与设计中的提效实践
2025-12-04
2025-12-03
2025-11-04
2025-11-13
2025-12-02
2025-11-13
2025-11-05
2025-11-06
2025-12-07
2026-01-15
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23