微信扫码
添加专属顾问
我要投稿
Quivr[1] 是一个开源的RAG(Retrieval-Augmented Generation)框架,目的是构建个性化的生成式AI第二大脑。
Quivr 能够作为一个高效的生产力助手,让你与文档(PDF、CSV等)和应用程序进行对话。
Quivr适用于需要高效信息检索和处理的个人和团队,无论是研究人员、开发者还是日常知识工作者,都可以通过Quivr提高工作效率。
可以一键部署到Porter Cloud,或者按照以下步骤在本地部署:
请确保已经安装了Docker和Docker Compose。
git clone https://github.com/quivrhq/quivr.git && cd quivr
.env.example
文件:cp .env.example .env
.env
文件中的OPENAI_API_KEY
。cd backend && supabase start
,然后docker compose pull && docker compose up
git pull
supabase migration up
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-16
你的 RAG 还在“垃圾进,垃圾出”?我用这套流程,把“废料”文档变成了黄金知识库
2025-09-15
应对知识管理挑战:RAG技术如何驱动企业智能化升级
2025-09-15
RAG彻底爆了!一文掌握其效果优化的架构设计及核心要点
2025-09-12
Meta如何给RAG做Context Engineering,让模型上下文增加16倍
2025-09-12
检索器江湖:那些让RAG神功大成的武林绝学
2025-09-12
Dify + Oracle + MCP:轻松构建 RAG 与 MCP Agent 智能应用
2025-09-11
做好 RAG 落地最后环节 —— 评估 RAG 应用
2025-09-10
企业级RAG系统实战心得:来自10多个项目的深度总结
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-20
2025-07-08
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05