微信扫码
添加专属顾问
我要投稿
CAMEL AI在Mistral cookbook上新增了一个教程。 主要内容为:如何利用 CAMEL 的RAG 与 Firecrawl 相结合,以实现高效的网络爬虫、multi-agent 角色扮演任务和知识图谱构建。
示例是介绍一个使用 Mistral 模型对 2024 年巴黎奥运会土耳其射手进行全面研究的示例。
图可能看不清,Agent ops和output单独截图在下方:
2个Agent,一个作为User提出指令,另外一个作为Assistant,执行任务。
ai user -> instruction -> ai assistant -> tool / args -> result - > ai user
最后可以生成图谱以及报告,整个过程需要7分钟,消耗60k tokens:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-29
教程|通义Qwen 3 +Milvus,混合推理模型才是优化RAG成本的最佳范式
2025-04-29
RAG开发框架LangChain与LlamaIndex对比解析:谁更适合你的AI应用?
2025-04-29
RAG性能暴增20%!清华等推出“以笔记为中心”的深度检索增强生成框架,复杂问答效果飙升
2025-04-29
超神了,ChatWiki 支持GraphRAG,让 AI 具备垂直深度推理能力!
2025-04-29
AI 产品思维:我如何把一个 AI 应用从基础 RAG 升级到 multi-agent 架构
2025-04-29
做好 AI Agent 最重要的是什么?
2025-04-29
颠覆传统RAG,创新大模型检索增强—Insight-RAG
2025-04-29
MCP:从理论到实践
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-29
2025-04-29
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20
2025-04-19