微信扫码
添加专属顾问
我要投稿
之前介绍了文本切分五个层级,本文方法是第三个层次:
Level 1: Character Splitting - 简单的字符长度切分
Level 2: Recursive Character Text Splitting - 通过分隔符切分,然后递归合并
Level 3: Document Specific Splitting - 针对不同文档格式切分 (PDF, Python, Markdown)
Level 4: Semantic Splitting - 语义切分
Level 5: Agentic Splitting-使用代理实现自动切分
基本概念和环境
分块通常旨在将具有共同上下文的文本放在一起。考虑到这一点,我们可能希望特别尊重文档本身的结构。例如,markdown 文件按标题组织。在特定标题组中创建块是一种直观的想法。为了解决这一挑战,我们可以使用MarkdownHeaderTextSplitter。这将按指定的一组标题拆分 markdown 文件。
本文用到的安装包如下:
pip install langchain-text-splitters
切分实现
markdown_document = "# Foo\n\n## Bar\n\nHi this is Jim\n\nHi this is Joe\n\n ### Boo \n\n Hi this is Lance \n\n ## Baz\n\n Hi this is Molly"headers_to_split_on = [("#", "Header 1"),("##", "Header 2"),("###", "Header 3"),]markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on)md_header_splits = markdown_splitter.split_text(markdown_document)print(md_header_splits)
结果如下:
[Document(page_content='Hi this is Jim\nHi this is Joe', metadata={'Header 1': 'Foo', 'Header 2': 'Bar'}), Document(page_content='Hi this is Lance', metadata={'Header 1': 'Foo', 'Header 2': 'Bar', 'Header 3': 'Boo'}), Document(page_content='Hi this is Molly', metadata={'Header 1': 'Foo', 'Header 2': 'Baz'})]markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)md_header_splits = markdown_splitter.split_text(markdown_document)print(md_header_splits)
[Document(page_content='# Foo\n## Bar\nHi this is Jim\nHi this is Joe', metadata={'Header 1': 'Foo', 'Header 2': 'Bar'}), Document(page_content='### Boo\nHi this is Lance', metadata={'Header 1': 'Foo', 'Header 2': 'Bar', 'Header 3': 'Boo'}), Document(page_content='## Baz\nHi this is Molly', metadata={'Header 1': 'Foo', 'Header 2': 'Baz'})]如何将 Markdown 行返回为单独的文档
默认情况下,MarkdownHeaderTextSplitter根据headers_to_split_on中指定的标题聚合行。我们可以通过指定return_each_line来禁用此功能,使得一行就是一条内容:
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on,return_each_line=True,)md_header_splits = markdown_splitter.split_text(markdown_document)print(md_header_splits)
[Document(page_content='Hi this is Jim', metadata={'Header 1': 'Foo', 'Header 2': 'Bar'}), Document(page_content='Hi this is Joe', metadata={'Header 1': 'Foo', 'Header 2': 'Bar'}), Document(page_content='Hi this is Lance', metadata={'Header 1': 'Foo', 'Header 2': 'Bar', 'Header 3': 'Boo'}), Document(page_content='Hi this is Molly', metadata={'Header 1': 'Foo', 'Header 2': 'Baz'})]如何限制块大小:
然后,我们可以在每个 markdown 组中应用任何我们想要的文本分割器,例如RecursiveCharacterTextSplitter,它允许进一步控制块大小。
markdown_document = "# Intro \n\n## History \n\n Markdown[9] is a lightweight markup language for creating formatted text using a plain-text editor. John Gruber created Markdown in 2004 as a markup language that is appealing to human readers in its source code form.[9] \n\n Markdown is widely used in blogging, instant messaging, online forums, collaborative software, documentation pages, and readme files. \n\n ## Rise and divergence \n\n As Markdown popularity grew rapidly, many Markdown implementations appeared, driven mostly by the need for \n\n additional features such as tables, footnotes, definition lists,[note 1] and Markdown inside HTML blocks. \n\n #### Standardization \n\n From 2012, a group of people, including Jeff Atwood and John MacFarlane, launched what Atwood characterised as a standardisation effort. \n\n ## Implementations \n\n Implementations of Markdown are available for over a dozen programming languages."headers_to_split_on = [("#", "Header 1"),("##", "Header 2"),]# MD splitsmarkdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on, strip_headers=False)md_header_splits = markdown_splitter.split_text(markdown_document)# Char-level splitsfrom langchain_text_splitters import RecursiveCharacterTextSplitterchunk_size = 250chunk_overlap = 30text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)# Splitsplits = text_splitter.split_documents(md_header_splits)splits
颠覆传统OCR轻松搞定复杂PDF的工具
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-18
从 RAG 到 Context:2025 年 RAG 技术年终总结
2025-12-17
embedding分数不是唯一解!搜索场景,如何根据元数据做加权rerank
2025-12-17
企业AI真瓶颈:不在模型,而在语境!
2025-12-17
从 1600+ 份 Word 文档到生产级 RAG:一个工控行业知识库的全链路实战复盘
2025-12-16
短语检索不等于BM25+向量检索| Milvus Phrase Match实战
2025-12-16
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10