微信扫码
添加专属顾问
我要投稿
LlamaParse[1] 是一个专为生成式人工智能(GenAI)设计的文档解析器,能够解析复杂的文档数据,以适应任何下游大型语言模型(LLM)的使用场景,如检索增强生成(RAG)或智能代理。
它能够解析多种复杂的文件类型,包括 PDF、PPTX、DOCX、XLSX 和 HTML,并且支持表格识别、多模态解析和自定义解析。
pip install llama-parse 命令安装 LlamaParse 包。import nest_asyncio
nest_asyncio.apply()
from llama_parse import LlamaParse
parser = LlamaParse(
api_key="llx-...", # 也可以设置环境变量 LLAMA_CLOUD_API_KEY
result_type="markdown", # 可选 "markdown" 和 "text"
num_workers=4, # 如果上传多个文件,将分成 `num_workers` 个 API 调用
verbose=True,
language="en", # 可选定义语言,默认为英文
)
# 同步解析单个文件
documents = parser.load_data("./my_file.pdf")
# 同步批量解析
documents = parser.load_data(["./my_file1.pdf", "./my_file2.pdf"])
# 异步解析单个文件
documents = await parser.aload_data("./my_file.pdf")
# 异步批量解析
documents = await parser.aload_data(["./my_file1.pdf", "./my_file2.pdf"])
注:本文内容仅供参考,具体项目特性请参照官方 GitHub 页面的最新说明。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-12-07
Embedding模型选型思路:相似度高不再代表检索准确(文末附实战指南)
2025-12-06
Palantir Ontology 助力AIP Agent落地工具介绍:Object Query
2025-12-05
把AI记忆做好,是一个价值6千亿美元的市场
2025-12-05
我错了,RAG还没完!AI记忆的结合会成为下一个技术风口
2025-09-15
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10