微信扫码
添加专属顾问
我要投稿
上个周,OpenSPG 开源了KAG 框架,通过利用知识图谱和向量检索的优势,在四个方面双向增强LLM和知识图谱,以解决 RAG 存在的挑战(RAG 存在着向量相似度与知识推理相关性差距大、对知识逻辑(如数值、时间关系、专家规则等)不敏感等问题,这些都阻碍了专业知识服务的落地。)。
整个框架包括kg-builder和kg-solver两部分
知识表示:
KAG参考了DIKW(数据、信息、知识和智慧)的层次结构,将SPG升级为对LLM友好的版本,能够处理非结构化数据、结构化信息和业务专家经验。采用版面分析、知识抽取、属性标化、语义对齐等技术,将原始的业务数据&专家规则融合到统一的业务知识图谱中。
推理步骤:
效果如何?
KAG在多跳问答任务中表现优异,相较于其他方法如NaiveRAG、HippoRAG等,在hotpotQA上的F1分数提高了19.6%,在2wiki上的F1分数提高了33.5%。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-05-19
淘天⾃营质量技术AI智能体的实践和思考
2025-05-19
BM25:RAG中的文本相关性排序
2025-05-19
RAG架构综述:探寻最适配RAG方案
2025-05-19
大模型RAG实战|生成带有引用来源的回答
2025-05-19
三路检索+多模态融合!深度解析RAG 2.0如何攻克大模型落地难题
2025-05-19
重磅!用 Gemini 2.5 搭载 Cohere Embed v4,视觉RAG 终于不用 Markdown 绕路了!
2025-05-19
如何选择Embedding Model?关于嵌入模型的10个思考
2025-05-19
小米 Mi-BRAG 智能引擎:全模态文档问答与细粒度溯源的创新实践
2024-10-27
2024-09-04
2024-05-05
2024-07-18
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-05-16
2025-05-15
2025-05-14
2025-05-14
2025-05-13
2025-05-11
2025-05-08
2025-05-05