微信扫码
添加专属顾问
我要投稿
可解释和可调试的知识:图表提供了可查询、可视化和更新的知识的人类可导航视图。
快速、低成本、高效:设计用于大规模运行而不需要大量资源或成本要求。
动态数据:自动生成和优化图表以最适合您的领域和本体需求。
增量更新:支持数据变化时的实时更新。
智能探索:利用基于 PageRank 的图形探索来提高准确性和可靠性。
异步和类型化:完全异步,并具有完整的类型支持,以实现强大且可预测的工作流程。
export OPENAI_API_KEY="sk-..."
curl https://raw.githubusercontent.com/circlemind-ai/fast-graphrag/refs/heads/main/mock_data.txt > ./book.tx
from fast_graphrag import GraphRAGDOMAIN = "Analyze this story and identify the characters. Focus on how they interact with each other, the locations they explore, and their relationships."EXAMPLE_QUERIES = ["What is the significance of Christmas Eve in A Christmas Carol?","How does the setting of Victorian London contribute to the story's themes?","Describe the chain of events that leads to Scrooge's transformation.","How does Dickens use the different spirits (Past, Present, and Future) to guide Scrooge?","Why does Dickens choose to divide the story into \"staves\" rather than chapters?"]ENTITY_TYPES = ["Character", "Animal", "Place", "Object", "Activty", "Event"]grag = GraphRAG(working_dir="./book_example",domain=DOMAIN,example_queries="\n".join(EXAMPLE_QUERIES),entity_types=ENTITY_TYPES)with open("./book.txt") as f:grag.insert(f.read())print(grag.query("Who is Scrooge?").response)
https://github.com/circlemind-ai/fast-graphrag
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-12-07
Embedding模型选型思路:相似度高不再代表检索准确(文末附实战指南)
2025-12-06
Palantir Ontology 助力AIP Agent落地工具介绍:Object Query
2025-12-05
把AI记忆做好,是一个价值6千亿美元的市场
2025-12-05
我错了,RAG还没完!AI记忆的结合会成为下一个技术风口
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-12-03
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10