微信扫码
添加专属顾问
我要投稿
offer捷报
RAG(Retrieval Augmented Generation)作为大模型最火热的应用之一,最初是为了解决 LLM 的各类问题的(如超长上下文)产生的,但后面大家发现在现阶段的很多企业痛点上,使用 RAG 是一个更好的解决方案。
于是,RAG 被越来越多提到,相关的论文,vectorDB,开源框架,一时间百花齐放。
但是我相信很多去实践 RAG 的人已经发现了一个情况,就是 RAG 入门很简单,基本不到半天就可以从头搭建一个基本的 RAG 系统。然而,要真正达到企业产品级应用的要求很难。
很多初学者对 RAG 中的各类组件、流程也不太了解,也不知道从哪儿下手去优化 RAG。所以这篇文章,我们就来聊聊 RAG,以及关于 RAG 的一些优化。
首先我们来看一下 RAG,简单来说,RAG 可以理解为 Retrieval 和 Generation,也就是检索与生成,在加上向量化和索引的工作,对 RAG 就可以总概方式地理解为“索引、检索和生成”
检索模块的调优
生成模型的调优
检索模块怎么优化?
总结
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-10
最新力作:一招提升RAG检索精度20%
2025-12-10
Apple 入局 RAG:深度解析 CLaRa 框架,如何实现 128x 文档语义压缩?
2025-12-09
客服、代码、法律场景适配:Milvus Ngram Index如何百倍优化LIKE查询| Milvus Week
2025-12-09
一键把碎片变成有料笔记:NoteGen,一款跨平台的 Markdown 笔记应用
2025-12-07
Embedding模型选型思路:相似度高不再代表检索准确(文末附实战指南)
2025-12-06
Palantir Ontology 助力AIP Agent落地工具介绍:Object Query
2025-12-05
把AI记忆做好,是一个价值6千亿美元的市场
2025-12-05
我错了,RAG还没完!AI记忆的结合会成为下一个技术风口
2025-10-04
2025-10-11
2025-09-30
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-11-13
2025-10-12
2025-09-16
2025-12-10
2025-11-23
2025-11-20
2025-11-19
2025-11-04
2025-10-04
2025-09-30
2025-09-10