微信扫码
添加专属顾问
我要投稿
Agentic RAG:AI的检索与决策新纪元,解锁复杂问题处理的新能力。 核心内容: 1. RAG技术概述及其在信息检索中的应用 2. AI Agent的定义及其核心能力 3. Agentic RAG的实现方式及多代理系统的优势
RAG (检索增强生成)让AI模型能查阅外部知识库,避免信息过时和"幻觉"问题 ?
? 工作流程:接收查询→检索信息→提供上下文→生成回答
但传统RAG检索流程固定,缺乏灵活性,难以处理复杂问题。
AI Agent是能自主行动的智能系统,具备:
自主决策能力
反思和调整能力
工具使用能力
多代理协作能力
Agentic RAG结合了RAG的检索能力和Agent的决策能力:
动态规划检索策略
智能选择最佳信息源
自主评估信息质量
复杂问题分解处理
实现方式:
最简单的Agentic RAG就像一个智能路由器:
这种系统像拥有"超能力"的研究助手,能根据问题类型灵活选择信息渠道!
单代理系统的局限在于一个Agent需要同时处理推理、检索和生成,因此多代理系统应运而生:
这就像一个专业研究团队,每位成员负责自己擅长的领域,共同解决复杂问题!
应用领域广泛,从客服到医疗、金融到教育,能处理更复杂信息需求,提供更精准回答!
From: weaviate
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-28
多少做RAG的人,连分词都搞不定? Milvus Analyzer指南
2025-10-28
先分块再向量化已经过时!先embedding再chunking才是王道
2025-10-28
AI检索增强中路由模型的使用
2025-10-28
HybRAG:混合文本和知识图谱的RAG框架
2025-10-28
“生成幻觉”(Hallucination)和“知识时效性”不足引发的架构范式变革
2025-10-27
RAG优化技巧
2025-10-26
关于RAG系统在多轮对话中的问题改写(优化)方法—使用历史记录改写问题
2025-10-26
你的RAG知识库,真的“喂”对数据了吗?拆解dify分段策略,告别无效召回
2025-09-15
2025-09-02
2025-08-05
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-09-08
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20