微信扫码
添加专属顾问
我要投稿
探索GraphRAG如何革新知识图谱与语言模型的结合,提升复杂查询和多跳推理能力。 核心内容: 1. GraphRAG技术定义与核心优势 2. 复杂查询处理:社区聚类与跨文档主题分析 3. 多跳推理案例:图谱路径分析与解释生成
GraphRAG(Graph-based Retrieval-Augmented Generation)是检索增强生成(RAG)技术的升级版本,通过将知识图谱(Knowledge Graph)与大型语言模型(LLM)结合,解决了传统RAG在处理复杂查询、多跳推理和跨文档语义关联上的局限。其核心目标是通过结构化的知识图谱表示,捕捉数据中实体、关系及全局语义,从而提升LLM对私有或未训练数据的理解与生成能力。
一、GraphRAG
二、知识图谱
一. 知识图谱构建核心:将非结构化文本转化为结构化知识网络
知识图谱构建的核心任务是将海量非结构化文本数据(如新闻、文献、网页内容等)转化为结构化的知识图谱。在这一过程中,节点代表实体(如人物、地点、事件、概念等),边则表示实体之间的语义关系(如“糖尿病→胰岛素→副作用”)。通过这种结构化表示,知识图谱能够清晰展现实体间的关联,为后续的语义推理、信息检索和智能问答提供支持。
二. 知识图谱构建过程:实体识别、关系抽取和图谱融合
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-28
多少做RAG的人,连分词都搞不定? Milvus Analyzer指南
2025-10-28
先分块再向量化已经过时!先embedding再chunking才是王道
2025-10-28
AI检索增强中路由模型的使用
2025-10-28
HybRAG:混合文本和知识图谱的RAG框架
2025-10-28
“生成幻觉”(Hallucination)和“知识时效性”不足引发的架构范式变革
2025-10-27
RAG优化技巧
2025-10-26
关于RAG系统在多轮对话中的问题改写(优化)方法—使用历史记录改写问题
2025-10-26
你的RAG知识库,真的“喂”对数据了吗?拆解dify分段策略,告别无效召回
2025-09-15
2025-09-02
2025-08-05
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-09-08
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20