微信扫码
添加专属顾问
我要投稿
深入剖析两大RAG框架,助你选择最适合的AI开发方案。 核心内容: 1. LangChain:模块化设计,广泛集成,记忆管理 2. LlamaIndex:高效索引与检索,简化RAG流程,可扩展性 3. 关键差异对比与应用场景选择建议
-------从核心功能到适用场景,一文读懂两大框架的核心差异!
在人工智能领域,检索增强生成(RAG)技术已成为连接大语言模型(LLM)与私有数据的关键桥梁。而LangChain与LlamaIndex作为两大主流开发框架,常让开发者陷入“选择困难”。它们各自有何特点?差异在哪里?本文带你一探究竟!
核心功能:
适用场景:
核心功能:
适用场景:
| 维度 | LangChain | LlamaIndex |
|---|---|---|
| 核心定位 | ||
| 灵活性 | ||
| 学习曲线 | ||
| 数据处理 | ||
| 典型用例 |
示例对比:
VectorStoreIndex.from_documents()即可完成核心步骤。混合使用建议:
LangChain与LlamaIndex并非“非此即彼”,而是互补的利器。理解两者的核心差异,才能根据业务需求精准选型。无论是追求灵活还是效率,两大框架都为AI应用开发提供了强大支持!
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-28
AI检索增强中路由模型的使用
2025-10-28
HybRAG:混合文本和知识图谱的RAG框架
2025-10-28
“生成幻觉”(Hallucination)和“知识时效性”不足引发的架构范式变革
2025-10-27
RAG优化技巧
2025-10-26
关于RAG系统在多轮对话中的问题改写(优化)方法—使用历史记录改写问题
2025-10-26
你的RAG知识库,真的“喂”对数据了吗?拆解dify分段策略,告别无效召回
2025-10-16
基于大模型的智能问答场景解决方案——RAG提升召回率的关键
2025-10-16
用合成数据评测 RAG 系统:一份可直接上手的 DeepEval 实操指南
2025-09-15
2025-09-02
2025-08-05
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-09-08
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20