微信扫码
添加专属顾问
我要投稿
突破长文档检索难题,LongRefiner带来新思路。 核心内容: 1. 长文档处理面临的信息杂乱和高计算成本挑战 2. LongRefiner三步走策略:双层查询分析、文档结构化处理、自适应文档精炼 3. 实验验证:性能提升9%以上,计算资源消耗大幅降低
大语言模型与RAG的应用越来越广泛,但在处理长文档时仍面临不少挑战。今天我们来聊聊一个解决这类问题的新方法——LongRefiner。
使用检索增强型生成(RAG)系统处理长文档时,主要有两个痛点:
如图所示,针对这些问题,研究者提出了LongRefiner,一个即插即用的文档精炼系统。它通过三个关键步骤来提高长文档处理效率:
不同的问题需要不同深度的信息,LongRefiner把查询分为两种类型:
系统会先判断用户的问题属于哪种类型,然后再决定需要提取多少信息。
把杂乱无章的长文档变成有条理的结构化文档,主要包括:
<section>
、<subsection>
)标记出文档的层次结构根据不同问题类型,系统会从两个角度评估文档各部分的重要性:
最后,系统会结合这两种视角的评分,筛选出最相关的内容来回答问题。
研究者在多种问答数据集上进行了测试,结果相当出色:
实验分析还揭示了几个有意思的发现:
LongRefiner为长文档的RAG系统提供了一种高效的解决方案。通过理解查询类型、结构化文档以及自适应精炼机制,它成功地在保持高性能的同时大幅降低了计算成本。这一研究为未来大语言模型处理长文档问题提供了新的思路。
对于需要处理大量长文档的应用场景,如智能客服、文档检索系统、知识库问答等,LongRefiner无疑是一个值得关注的技术。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-11
企业级 RAG 系统实战(2万+文档):10 个项目踩过的坑(附代码工程示例)
2025-10-09
RAG-Anything × Milvus:读PDF要集成20个工具的RAG时代结束了!
2025-10-09
RAGFlow 实践:公司研报深度研究智能体
2025-10-04
Embedding与Rerank:90%的RAG系统都搞错了!为什么单靠向量检索会毁了你的AI应用?
2025-09-30
存算一体破局向量检索瓶颈,IBM放出王炸VSM:性能飙升100倍,能效碾压GPU千倍,RAG要变天?
2025-09-26
RAG在B站大会员中心数据智能平台的应用实践
2025-09-25
阿里RAG全链路评估框架之CoFE-RAG
2025-09-24
从“黑盒”到“白盒”:Dify 2.0 知识管道,赋予企业RAG前所未有的可控性
2025-07-15
2025-07-16
2025-09-15
2025-08-05
2025-08-18
2025-09-02
2025-08-25
2025-08-25
2025-07-21
2025-08-25
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20