微信扫码
添加专属顾问
我要投稿
提升AI问答准确率的新策略,RAR技术揭示了检索和推理的结合之道。 核心内容: 1. RAG技术中常被忽视的RAR方法及其重要性 2. 传统检索方法的局限性与RAR技术的优势对比 3. RAR在多源异构知识库和复杂问题解决中的应用场景
在RAG(检索增强生成)落地的过程中,存在一个效果显著,却常被忽视的技术方法 —— RAR
“最近极客公园报道了哪些关于具身智能的初创公司”
“某型号设备在Q3华东区的具体销量”
“为什么上季度的产品的退货率突然升高?可能受哪些因素影响?”
(需要分析退货记录、客户反馈、物流数据等多方信息,推断原因链)
“基于当前市场趋势和库存水平,应该优先推广哪款产品?”
(需要综合市场报告、库存数据、产品利润等信息进行决策分析)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-06
给AI装上一个'超级大脑':信息检索如何改变RAG系统的游戏规则
2025-09-05
别让你的RAG“吃”垃圾数据了!从源头构建高质量知识库的深度文档解析指南
2025-09-05
别再说你的RAG召回率不行,都怪你文档处理的太差——别拿文档处理是难点当借口
2025-09-05
【RAG的16种玩法】反馈闭环、自适应检索增强(中)
2025-09-04
在RAG文档处理中——怎么处理噪音问题
2025-09-04
RAG知识库十大误区 和 提高准确率示例
2025-09-04
别再只会向量检索!16 个 RAG 高阶玩法曝光(上)
2025-09-03
基于RAG的工业品商品智能推荐
2025-06-20
2025-06-20
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-06-15
2025-06-20
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05
2025-07-28
2025-07-09