免费POC, 零成本试错
AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


对话式 RAG:让你的问答应用更“聪明”

发布日期:2025-08-24 08:59:23 浏览次数: 1516
作者:PyTorch研习社

微信搜一搜,关注“PyTorch研习社”

推荐语

让你的问答机器人更懂上下文!本文教你如何升级RAG系统,实现自然流畅的多轮对话体验。

核心内容:
1. 对话式RAG的核心思路:从单次检索到上下文感知
2. 关键技术:消息序列管理、自动查询生成、持久化记忆机制
3. 实战效果展示与未来发展方向

杨芳贤
53AI创始人/腾讯云(TVP)最具价值专家

在很多问答(Q&A)应用中,用户希望和机器人进行自然的多轮对话。这意味着应用不仅要能回答单个问题,还需要具备“记忆”功能,把过去的问题和答案利用起来,才能让对话连贯。

本文将介绍如何在 RAG(Retrieval-Augmented Generation,检索增强生成) 的基础上,扩展支持对话交互。

🔑 核心思路

传统的 RAG 通常是这样的流程:

👉 用户输入问题 → 检索文档 → 生成答案

在对话场景中,我们需要把 历史消息 纳入考虑。本文介绍了两种方式:

  1. 链(Chain):只执行一次检索步骤;

  2. 智能体(Agent:允许模型根据需要多次检索,直到找到合适的答案。

🗂️ 消息序列:更自然的对话状态表示

在对话式应用里,不同类型的消息都会被记录:

  • HumanMessage:用户输入

  • AIMessage:助手回复

  • ToolMessage:工具返回结果(比如检索到的文档)

整个对话过程就像一条消息链,模型不仅能看到用户和助手的对话,还能结合工具调用结果来生成更合理的答案。

🔍 自动生成检索查询

在多轮对话中,用户的问题往往需要结合上下文才能理解。比如:

用户:耐克在美国有多少个配送中心?
AI:耐克在美国有 8 个配送中心。
用户:在美国之外有哪些?

这时模型会自动把用户模糊的问题改写为完整的检索查询:
👉 “耐克在美国之外有哪些配送中心?”

这样即使用户没说全,模型也能自动补全上下文。

⚙️ 架构设计

应用的核心流程可以抽象为三个节点:

  1. 用户输入节点:生成检索请求或直接回复;

  2. 检索工具节点:执行向量数据库查询;

  3. 响应生成节点:基于检索结果生成最终答案。

这种设计保证了灵活性:

  • 用户打招呼时,可以直接回复;

  • 用户提问时,则会触发检索和推理。

🧠 让机器人拥有记忆

要支持多轮对话,应用需要保存历史对话。文章中介绍了使用 LangGraph 的持久化机制

  • 每一轮消息都会追加到状态中;

  • 通过设置 thread_id,不同会话线程能被独立保存;

  • 用户可以随时继续之前的对话,机器人还能记住上下文。

🚀 应用效果

  • 输入:“你好” → 系统直接回复,不触发检索。

  • 输入:“耐克,包括匡威在美国有多少个配送中心?” → 检索并回答。

  • 输入:“在美国之外有哪些?” → 自动补全查询,并基于历史对话给出答案。

这让应用更像一个真正的对话助手,而不是“单问单答”的工具。

📌 总结

对话式 RAG 的关键点:

  1. 用消息序列管理对话状态;

  2. 借助工具调用让模型自动生成检索查询;

  3. 利用持久化机制,让应用拥有“记忆”。

通过这些改造,你的问答机器人就能更自然地理解上下文、灵活检索信息,并保持连贯对话。

✨ 未来我们还可以进一步探索:如何在对话中结合更复杂的多工具协作,甚至让智能体像人一样自由选择信息来源。

本系列课程源代码位于:

https://github.com/realyinchen/AgenticRAG

课程的文字版将发布在我的知识星球:

图片

如果你对提示工程感兴趣,可以进入微信公众号主页,进入【提示工程】专栏:

图片


53AI,企业落地大模型首选服务商

产品:场景落地咨询+大模型应用平台+行业解决方案

承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

添加专属顾问

回到顶部

加载中...

扫码咨询