微信扫码
添加专属顾问
我要投稿
ComRAG框架通过“质心式”记忆机制,巧妙解决了社区问答平台的三大痛点,性能比RAG提升27.4%。 核心内容: 1. 社区问答平台面临的三大挑战与现有方法的不足 2. ComRAG框架的双库设计与质心记忆机制详解 3. 实验验证中ComRAG在多个数据集上的显著性能提升
社区问答(CQA)平台(如 Stack Overflow、AskUbuntu)沉淀了大量高质量知识,但在工业界落地时仍面临三大挑战:
现有方法要么只检索社区历史,要么只用静态文档,缺少“动态反思 + 高效存储”的机制。ComRAG 正是为了解决这些痛点而生。
*图 1:ComRAG 实时社区问答(CQA)架构。系统整合了一个静态知识向量库和两个动态 CQA 向量库(高质量与低质量),后者通过基于质心的记忆机制进行管理。
核心思想一句话:“既要官方文档的权威,也要社区历史的经验,还要随时间动态遗忘低质量内容”。
为了处理“质量不一致 + 存储无限膨胀”两个问题,作者提出双库 + 质心记忆机制:
High-Quality Store | ||
Low-Quality Store |
图 4:利用质心聚类控制存储增长,ProCQA 上 10 轮迭代后 chunk 增长率从 20.23% 降到 2.06%
收到新问题 q 时,ComRAG 按相似度阈值 τ, δ 走三条路径之一:
MSQA | ||||
ProCQA | ||||
PolarDBQA |
指标:
表 1:三大数据集上 ComRAG 均显著优于所有基线
图 2:PolarDBQA 上移除任一模组都会显著降低 BERT-Score 或增加延迟
效果 | |
效率 | |
存储 | |
可插拔 |
“ComRAG 的核心价值不在于模型本身,而在于用质心记忆机制把‘时间’和‘质量’显式建模进了检索-生成流程。”
https://arxiv.org/abs/2506.21098ComRAG: Retrieval-Augmented Generation with Dynamic Vector Stores for Real-time Community Question Answering in Industry
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-12
任何格式RAG数据实现秒级转换!彻底解决RAG系统中最令人头疼的数据准备环节
2025-10-12
总结了 13 个 顶级 RAG 技术
2025-10-11
企业级 RAG 系统实战(2万+文档):10 个项目踩过的坑(附代码工程示例)
2025-10-09
RAG-Anything × Milvus:读PDF要集成20个工具的RAG时代结束了!
2025-10-09
RAGFlow 实践:公司研报深度研究智能体
2025-10-04
Embedding与Rerank:90%的RAG系统都搞错了!为什么单靠向量检索会毁了你的AI应用?
2025-09-30
存算一体破局向量检索瓶颈,IBM放出王炸VSM:性能飙升100倍,能效碾压GPU千倍,RAG要变天?
2025-09-26
RAG在B站大会员中心数据智能平台的应用实践
2025-07-15
2025-07-16
2025-09-15
2025-08-05
2025-08-18
2025-09-02
2025-08-25
2025-08-25
2025-07-21
2025-08-25
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20