微信扫码
添加专属顾问
我要投稿
深入探索大模型预训练的核心机制,掌握BERT和GPT的预训练技术。 核心内容: 1. 预训练的目标与自监督学习的重要性 2. BERT预训练的MLM与NSP任务详解 3. 新手学习预训练模型的阶段性建议与资源
一、BERT(MLM + NSP)
from transformers import BertTokenizer, BertForMaskedLM, BertForNextSentencePrediction, Trainer, TrainingArgumentsimport torch# 加载预训练模型和tokenizertokenizer = BertTokenizer.from_pretrained("bert-base-uncased")model_mlm = BertForMaskedLM.from_pretrained("bert-base-uncased") # MLM专用model_nsp = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") # NSP专用(旧版BERT支持)# 示例输入(MLM)text = "The cat sits on the [MASK]."inputs = tokenizer(text, return_tensors="pt")outputs = model_mlm(**inputs)predicted_token_id = torch.argmax(outputs.logits[0, -1]).item()print(tokenizer.decode(predicted_token_id)) # 输出预测的词(如"mat")# 示例输入(NSP)sentence1 = "I like cats."sentence2 = "They are cute."sentence3 = "The sky is blue."inputs_nsp = tokenizer(sentence1 + " [SEP] " + sentence2, return_tensors="pt") # 正例inputs_nsp_neg = tokenizer(sentence1 + " [SEP] " + sentence3, return_tensors="pt") # 负例model_nsp = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") # 注意:新版本BERT已合并MLM+NSP二、GPT(CLM)
from transformers import GPT2LMHeadModel, GPT2Tokenizerimport torch# 加载预训练模型和tokenizertokenizer = GPT2Tokenizer.from_pretrained("gpt2")model = GPT2LMHeadModel.from_pretrained("gpt2")# 输入文本(CLM任务)input_text = "The cat sits on the"inputs = tokenizer(input_text, return_tensors="pt")# 生成下一个词outputs = model.generate(**inputs, max_length=20, num_return_sequences=1)print(tokenizer.decode(outputs[0])) # 输出完整句子(如"The cat sits on the mat and sleeps.")53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-10
前Mata GenAI研究员田渊栋的年终总结:关于未来AI的思考
2026-01-07
智元发布SOP:让机器人在真实世界规模化部署与智能化运行
2026-01-04
英伟达4B小模型:合成数据+测试时微调+优化集成
2026-01-04
2026年 LLM 微调全指南
2026-01-03
本地跑小模型带来5倍性能且成本极低!斯坦福从信息论视角重构智能体设计
2026-01-02
DeepSeek 发布新论文,提出全新 MHC 架构,有何创新与应用前景?
2026-01-01
刚刚,梁文锋署名,DeepSeek元旦新论文要开启架构新篇章
2025-12-30
数据蒸馏技术探索
2025-10-21
2025-10-14
2025-11-21
2025-11-05
2025-11-05
2025-12-04
2025-11-22
2025-11-20
2025-11-19
2026-01-01
2026-01-02
2025-11-19
2025-09-25
2025-06-20
2025-06-17
2025-05-21
2025-05-17
2025-05-14