微信扫码
添加专属顾问
我要投稿
深入探索大模型预训练的核心机制,掌握BERT和GPT的预训练技术。 核心内容: 1. 预训练的目标与自监督学习的重要性 2. BERT预训练的MLM与NSP任务详解 3. 新手学习预训练模型的阶段性建议与资源
一、BERT(MLM + NSP)
from transformers import BertTokenizer, BertForMaskedLM, BertForNextSentencePrediction, Trainer, TrainingArgumentsimport torch# 加载预训练模型和tokenizertokenizer = BertTokenizer.from_pretrained("bert-base-uncased")model_mlm = BertForMaskedLM.from_pretrained("bert-base-uncased") # MLM专用model_nsp = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") # NSP专用(旧版BERT支持)# 示例输入(MLM)text = "The cat sits on the [MASK]."inputs = tokenizer(text, return_tensors="pt")outputs = model_mlm(**inputs)predicted_token_id = torch.argmax(outputs.logits[0, -1]).item()print(tokenizer.decode(predicted_token_id)) # 输出预测的词(如"mat")# 示例输入(NSP)sentence1 = "I like cats."sentence2 = "They are cute."sentence3 = "The sky is blue."inputs_nsp = tokenizer(sentence1 + " [SEP] " + sentence2, return_tensors="pt") # 正例inputs_nsp_neg = tokenizer(sentence1 + " [SEP] " + sentence3, return_tensors="pt") # 负例model_nsp = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") # 注意:新版本BERT已合并MLM+NSP
二、GPT(CLM)
from transformers import GPT2LMHeadModel, GPT2Tokenizerimport torch# 加载预训练模型和tokenizertokenizer = GPT2Tokenizer.from_pretrained("gpt2")model = GPT2LMHeadModel.from_pretrained("gpt2")# 输入文本(CLM任务)input_text = "The cat sits on the"inputs = tokenizer(input_text, return_tensors="pt")# 生成下一个词outputs = model.generate(**inputs, max_length=20, num_return_sequences=1)print(tokenizer.decode(outputs[0])) # 输出完整句子(如"The cat sits on the mat and sleeps.")
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-05-26
DeepSeek V3 0526更新?实测代码能力已经提升,附实测案例。
2025-05-26
从MCP实践到开发简单的MCP服务
2025-05-26
MCP Server的五种主流架构与Nacos的选择
2025-05-26
聊聊Cherry Studio如何接入vLLM部署的本地大模型
2025-05-24
颠覆认知!大模型自检自改新范式,彻底告别人工标注
2025-05-23
Reasoning模型蒸馏实践:用大模型提升小模型能力
2025-05-23
OpenAI 重磅推出!核心API新增MCP功能,智能体开发迎来翻天覆地的变化
2025-05-22
如何让 Agent 规划调用工具
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01