微信扫码
添加专属顾问
我要投稿
langchain输入输出(message/output)总体上对 langchain 已经有一个简单的认识。本篇文章我们从langchain 输入输出(message/output) 开始介绍相关的知识内容。
我们使用 openAI 的 model 演示示例,如果你还没有一个 openAI 的账户, 你可以使用自己已经拥有的 model 即可。
首先我们需要安装相关的依赖包:
source .venv/bin/activate
pip install langchain-openai
pip install openai配置相关的环境变量, 这里我们使用 AzureOpenAI 相关的服务。
import os
import dotenv
import openai
# from langchain_openai import AzureOpenAI
from langchain_openai import AzureOpenAI, AzureChatOpenAI
from langchain_openai import AzureOpenAIEmbeddings我们初始化相关的模型,初始化模型需要相关模型的 secret 等配置,你可以根据自己实际的情况配置即可。
dotenv.load_dotenv(".env")
# embeddingModel = AzureOpenAIEmbeddings(
# model=os.getenv("AZURE_OPENAI_EMBEDDING_MODEL")
# )
# 实例化 AzureOpenAI
llm = AzureOpenAI(
deployment_name="gpt-35-turbo",
azure_deployment="gpt-35-turbo"
)
# 实例化 AzureChatOpenAI
chat_llm = AzureChatOpenAI(
azure_deployment="gpt-35-turbo",
openai_api_version="2023-05-15"
)如果你不想在环境配置设置,你可以直接在初始化相关类的时候传递相关的参数即可,建议设置环境变量或者配置在
.env的配置文件中:
llm = AzureOpenAI(
deployment_name="gpt-35-turbo-instruct-0914",
)llm 与 chat_llm 便是特定模型的对象,如果你使用的跟我不一样,那你可以根据自己的 LLM 配置即可。
temperature 参数主要的区别是他们的输入输出模式,LLM 对象将字符串作为输入和输出。chat_llm对象将消息作为输入并输出消息。相关的差异我们稍后介绍。
当我们分别调用 llm 和 chat_llm 的时候我们观察两个输出的区别:
from langchain_core.messages import HumanMessage
text = "What would be a good company name for a company that makes colorful socks?"
message = HumanMessage(content=text)
# llm.invoke(text)
# >> Feetful of Fun
chat_llm.invoke(text)
# AIMessage(content='VibrantSock Co.')我们可以看到 llm 输出的是一个字符串, 而chat_llm输出的是一个AIMessage类型消息.
大多数的 LLM 并不会将用户的输入直接传递给 LLM 内部,通常他们会将用户的输入添加到一个较大的文本中,成为 prompt . 在前面的示例中, 我们传递给 LLM 的文本包含生成公司名称的指令,对于我们的应用程序,如果用户只需要提供公司的产品描述而不必提供相关的型号说明 What would be a good company name for a company that makes {product}?,langchain 给我们提供了相关的函数,我们可以很简单的将变化的内容替换成我们自己想设置的任何值。
PromptTemplate 正好可以帮助我们解决这个问题,他们提供了从用户输入到完全格式化的提示所有的逻辑,所以使用起来还是比较简单的。比如:
from langchain.prompts import PromptTemplate
template = "What would be a good company name for a company that makes {product}?"
prompt = PromptTemplate.from_template(template=template)
prompt.format(product="color socks")'What would be a good company name for a company that makes color socks?'
我们可以看到,langchain 已经帮我们格式化了字符串. 这样我们只需要输入关键字的内容 product="color socks" 即可。与原始字符串格式化相比,使用它们有几个优点。可以部分输出变量
例如,我们一次只能格式化部分变量。您可以将它们组合在一起,轻松地将不同的模板组合成一个提示。
PromptTemplates 也可用于生成消息列表。在这种情况下,提示不仅包含有关内容的信息,还包含每条消息(其角色、在列表中的位置等)。在这里,最常使用的是 ChatPromptTemplate 。每个都ChatMessageTemplate包含格式化ChatMessage以及对应的角色,然后还有它的内容。让我们看看下面这个:
from langchain.prompts.chat import ChatPromptTemplate
# 我们使用一个通用翻译 prompt
template = "You are a helpful assistant that translates {input_language} to {output_language}."
hum_template = "{text}"
chat_prompt = ChatPromptTemplate.from_messages(
[
("system", template),
("human", hum_template)
]
)
chat_prompt.format_messages(
input_language="English", output_language="Chinese", text="I love programming.")[SystemMessage(content='You are a helpful assistant that translates English to Chinese.'), HumanMessage(content='I love programming.')]
输出后的结果:
[SystemMessage(content='You are a helpful assistant that translates English to Chinese.'), HumanMessage(content='I love programming.')]
这里很明显可以看到格式化后的 message 分为两部分:SystemMessage 与 HumanMessage
• SystemMessage 也被称为角色设定
• HumanMessage 是用户的聊天内容
OutputParser 将语言模型的原始输出转换为可以在下游使用的格式。有几种主要类型 OutputParser,包括:
• 将文本转换LLM为结构化信息(例如 JSON)
• 将转换ChatMessage为字符串
• 将除消息之外的调用返回的额外信息(如 OpenAI 函数调用)转换为字符串。
from langchain.output_parsers import CommaSeparatedListOutputParser
output_parser = CommaSeparatedListOutputParser()
output_parser.parse("foo, bar, baz")
# CommaSeparatedListOutputParser 解析LLM调用的输出为逗号分隔的列表。
# > ['foo', 'bar', 'baz']我们现在可以将所有这些组合成一条链。该链将获取输入变量,将这些变量传递给提示模板以创建提示,将提示传递给语言模型,然后通过(可选)输出解析器传递输出。这是模块化逻辑块的便捷方法。我们来看看它的实际效果!
template = "Generate a list of 5 {text}.\n\n{format_instructions}"
chat_prompt = ChatPromptTemplate.from_template(template)
chat_prompt = chat_prompt.partial(
format_instructions=output_parser.get_format_instructions())
chain = chat_prompt | chat_llm | output_parser
chain.invoke({"text": "colors"})
# >> ['red', 'blue', 'green', 'yellow', 'orange']我们在使用 | 语法将这些组件连接在一起。该 | 语法是 LangChain 表达式语言 LCEL提供支持,并依赖于Runnable所有这些对象实现的通用接口.
我们解释一下上面代码 chain = chat_prompt | chat_llm | output_parser 的执行流程:
开始 chat_prompt -> chat_llm -> output_parser 将 prompt 的内容输入到 llm 中,llm 返回的内容到 output_parser 中,langchain 已经帮助我们做了这些事情,我们只需要关注输入已经输出即可。
做过 openAI 的都知道,如果我们没有使用 langchain ,我们需要这么做:
• 自己格式化 prompt 里面的变量
• 将 prompt 传给 llm 并获取到输出 ouput
• 将 output 输出的字符串内容格式化为我们想要的结果 list[str],如果需要特定格式的数据,我们需要自定义他们
以上这些复杂的步骤langchain 已经帮我们做了很多。
我们今天讨论了 langchain 的prompt输入以及output输出.
1、输入我们使用 ChatPromptTemplate 来构建输入,ChatPromptTemplate 可以用来构建一个比较复杂的 prompt, 他会构造一个 list[Message] 的列表,并在输入到 llm的时候会自动格式化相关的字符串。也就是当我们跟 LLM 去对话的时候,我们的输入的内容需要与 LLM 的保持一致,langchain 帮助我们做到了这一点。
2、对于输出 output,我们同样不需要自己去解相关返回值,langchain 可提供了很多的函数,比如常用的 StructuredOutputParser, JsonOutputToolsParser 等等。方便我们在解析不同的输出格式的情况下的数据解析过程。
3、使用 LCEL 将 prompt、llm、output 等流程结合起来,后续我们还会看到很多这样的用法,也就是 langchain 的核心能力。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-29
为什么我们选择 LangGraph 作为智能体系统的技术底座?
2025-10-27
Langchain 、 Manus 组了一个研讨会:Agent越智能,死得越快!
2025-10-23
LangChain V1.0 深度解析:手把手带你跑通全新智能体架构
2025-10-23
LangChain 与 LangGraph 双双发布 1.0:AI 智能体框架迎来里程碑时刻!
2025-10-19
AI 不再“乱跑”:LangChain × LangGraph 打造可控多阶段智能流程
2025-10-15
LangChain对话Manus创始人:顶级AI智能体上下文工程的“满分作业”首次公开
2025-10-09
Langchain回应OpenAI:为什么我们不做拖拉拽工作流
2025-09-21
告别无效检索:我用LangExtract + Milvus升级 RAG 管道的实战复盘
2025-09-13
2025-09-21
2025-10-19
2025-08-19
2025-08-17
2025-09-19
2025-09-12
2025-09-06
2025-08-03
2025-08-29
2025-10-29
2025-07-14
2025-07-13
2025-07-05
2025-06-26
2025-06-13
2025-05-21
2025-05-19