微信扫码
添加专属顾问
我要投稿
LangGraph,AI代理开发的新一代框架,重新定义智能体构建方式。 核心内容: 1. LangGraph框架概述及其在LangChain生态中的核心定位 2. LangGraph核心能力:循环与分支、持久化状态管理、人类在环等 3. 技术原理揭秘:状态管理、节点与边、持久化引擎等
LangGraph 是由LangChain团队开发的开源框架,专为构建状态化、多代理(Multi-Agent)系统而设计。它通过图结构(Graph)实现复杂的动态工作流,尤其擅长与大型语言模型(LLMs)结合,支持循环、持久性、人工干预等核心功能,被视为AI代理开发的“终结者”。
核心定位:
LangGraph的底层设计融合了状态机和图计算模型:
MemorySaver
等模块,支持将状态保存至内存或数据库,确保长周期任务不丢失上下文。示例代码(构建天气查询代理):
from langgraph.graph import StateGraph, MessagesState
from langgraph.prebuilt import ToolNode
# 定义搜索工具
@tool
def search(query: str):
if"sf"in query: return"60度,有雾"
return"90度,晴天"
workflow = StateGraph(MessagesState)
workflow.add_node("agent", call_model) # 调用LLM
workflow.add_node("tools", ToolNode([search])) # 调用工具
workflow.add_conditional_edges("agent", should_continue) # 条件分支
pip install langgraph
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-26
LangChain的OpenAI和ChatOpenAI,到底应该调用哪个?
2025-06-26
开发AI Agent到底用什么框架——LangGraph VS. LlamaIndex
2025-06-24
大模型开发基础:LangChain基础样例
2025-06-19
LangChain ReAct 中文解析器实现
2025-06-16
基于LangGraph多智能体框架的共享内存实现与探索
2025-06-16
一、LangGraph基础入门
2025-06-13
【LangChain 团队重磅实测报告】多智能体架构揭秘:谁才是性能之王?
2025-06-13
大模型_百炼:MCP让我焦虑
2025-05-08
2025-05-06
2025-04-18
2025-06-05
2025-05-28
2025-04-13
2025-04-18
2025-05-19
2025-03-31
2025-04-25
2025-06-26
2025-06-13
2025-05-21
2025-05-19
2025-05-08
2025-05-06
2025-04-22
2025-04-18