微信扫码
添加专属顾问
我要投稿
Langfuse:为LLM应用开发和运维带来革新的可观测性平台。 核心内容: 1. Langfuse解决LLM应用开发中的监控难题 2. 模块化架构设计和关键组件介绍 3. 追踪与观测、提示词管理等核心功能详解
一个典型的案例是,某客户面向的机器人在深夜出现延迟峰值,通过Langfuse追踪发现是工具集成失败导致的重试问题。这种精确的问题定位能力大大缩短了故障恢复时间。
from langfuse import observefrom langfuse.openai import openai # OpenAI integration@observe()def story(): return openai.chat.completions.create( model="gpt-4o", messages=[{"role": "user", "content": "What is Langfuse?"}], ).choices[0].message.content@observe()def main(): return story()main()
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-07-05
一文看懂 LangChain:为什么火?核心模块都干啥?
2025-07-04
上下文工程:LangGraph四大高效调度策略,Agent告别“记忆过载”!
2025-07-04
LangChain教程——提示词模板
2025-07-03
继提示词工程、RAG技术浪潮后,LangChain领域中上下文工程正成为新的热门方向!
2025-07-01
LangChain教程——LangChain基本使用
2025-06-26
LangChain的OpenAI和ChatOpenAI,到底应该调用哪个?
2025-06-26
开发AI Agent到底用什么框架——LangGraph VS. LlamaIndex
2025-06-24
大模型开发基础:LangChain基础样例
2025-05-06
2025-05-08
2025-04-18
2025-06-05
2025-05-28
2025-04-13
2025-04-18
2025-05-19
2025-04-25
2025-05-28
2025-07-05
2025-06-26
2025-06-13
2025-05-21
2025-05-19
2025-05-08
2025-05-06
2025-04-22