微信扫码
添加专属顾问
我要投稿
Langfuse:为LLM应用开发和运维带来革新的可观测性平台。 核心内容: 1. Langfuse解决LLM应用开发中的监控难题 2. 模块化架构设计和关键组件介绍 3. 追踪与观测、提示词管理等核心功能详解
一个典型的案例是,某客户面向的机器人在深夜出现延迟峰值,通过Langfuse追踪发现是工具集成失败导致的重试问题。这种精确的问题定位能力大大缩短了故障恢复时间。
from langfuse import observefrom langfuse.openai import openai # OpenAI integration@observe()def story(): return openai.chat.completions.create( model="gpt-4o", messages=[{"role": "user", "content": "What is Langfuse?"}], ).choices[0].message.content@observe()def main(): return story()main()53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-22
Deepagents落地场景来了:用openwork实现专属办公小管家
2026-01-05
快速上手:LangChain + AgentRun 浏览器沙箱极简集成指南
2026-01-05
为什么大模型企业都在强调可以连续工作XX小时的Agent和模型?长时运行Agent解析(Long-Running Agents)
2025-12-29
单agent落幕,双agent才能解决复杂问题!附LangGraph+Milvus实操
2025-12-28
为什么说LangGraph是企业级AI智能体的「终极答案」?
2025-12-26
跟我学LangChain:提示词模板,PromptTemplate包装器,工程化管理你的提示词
2025-12-24
别再堆 Prompt 了:用 LangChain 1.0 搭建“深度思考 Agent”
2025-12-21
文档审核Agent2.0系统落地方案:LangChain1.1+MinerU
2025-11-03
2025-11-06
2025-10-31
2025-11-05
2025-12-21
2025-11-01
2025-10-29
2025-12-21
2025-11-25
2025-11-08
2025-11-03
2025-10-29
2025-07-14
2025-07-13
2025-07-05
2025-06-26
2025-06-13
2025-05-21