微信扫码
添加专属顾问
我要投稿
文本分割器的基本工作原理:
定制文本分割器的两个主要轴向:
主要参数和功能:
def transformer_doc():# 加载待分割长文本 with open('sys_boss.txt',encoding='UTF-8') as f:state_of_the_union = f.read()text_splitter = RecursiveCharacterTextSplitter(chunk_size = 100,chunk_overlap= 20,length_function = len,add_start_index = True,)docs = text_splitter.create_documents([state_of_the_union])print(docs[0])print(docs[1])metadatas = [{"document": 1}, {"document": 2}]documents = text_splitter.create_documents([state_of_the_union, state_of_the_union], metadatas=metadatas)print(documents[0])
def spit_code():print([e.value for e in Language])html_text = """<!DOCTYPE html><html><head><title>?️? LangChain</title><style>body {font-family: Arial, sans-serif;}h1 {color: darkblue;}</style></head><body><div><h1>?️? LangChain</h1><p>⚡ Building applications with LLMs through composability ⚡</p></div><div>As an open source project in a rapidly developing field, we are extremely open to contributions.</div></body></html>"""html_splitter = RecursiveCharacterTextSplitter.from_language(language=Language.HTML, chunk_size=60, chunk_overlap=0)html_docs = html_splitter.create_documents([html_text])print(html_docs)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-17
Manus、LangChain一手经验:先别给Multi Agent判死刑,是你不会管理上下文
2025-08-16
关于Langchain/Langgraph框架的流式与非流式返回——invoke/ainvoke/stream/astream
2025-08-12
LangChain+BAML:打造99.4%成功率的知识图谱构建方案
2025-08-09
基于LangChain+LangGraph+LangSmith+Streamlit开发带Web页面交互的Agent
2025-08-06
LangChain 的「记忆压缩术」:聊聊大模型的上下文工程设计之道
2025-08-05
LangChain与LlamaIndex对比
2025-08-05
使用 LangSmith 实现 12 种 AI 智能体评估技术
2025-08-04
基于上下文工程的LangChain人工智能智能体应用
2025-06-05
2025-05-28
2025-05-28
2025-07-14
2025-06-26
2025-07-14
2025-05-30
2025-07-16
2025-05-21
2025-06-16
2025-07-14
2025-07-13
2025-07-05
2025-06-26
2025-06-13
2025-05-21
2025-05-19
2025-05-08