微信扫码
添加专属顾问
我要投稿
一个月前,Meta 发布了开源大模型 llama3 系列,在多个关键基准测试中优于业界 SOTA 模型,并在代码生成任务上全面领先。
此后,开发者们便开始了本地部署和实现,比如 llama3 的中文实现、llama3 的纯 NumPy 实现等。
几天前,有位名为「Nishant Aklecha」的开发者发布了一个从零开始实现 llama3 的存储库,包括跨多个头的注意力矩阵乘法、位置编码和每个层在内都有非常详细的解释,帮助我们理解大语言模型是如果构建和工作的。
该项目得到了大神 Karpathy 的称赞,他表示项目看起来不错,完全展开后,通过模块嵌套和相互调用,可以更容易看到实际的情况。
项目地址:https://github.com/naklecha/llama3-from-scratch
详细实现见仓库地址:https://github.com/wdndev/llama3-from-scratch-zh
项目主要翻译「Nishant Aklecha」的 https://github.com/naklecha/llama3-from-scratch 仓库,并对中文版做了特殊的适配,使该项目能在一台 16G RAM 的笔记本电脑上运行:
tiktoken
库进行文本分词。<|begin_of_text|>
、文本结束<|end_of_text|>
等。tokenizer.encode
将文本转换为标记序列,通过tokenizer.decode
将标记序列转换回文本。dim
: 4096n_layers
: 32n_heads
: 32n_kv_heads
: 8vocab_size
: 128256multiple_of
、ffn_dim_multiplier
、norm_eps
、rope_theta
等。torch.nn.Embedding
层将标记ID转换为词嵌入向量。53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-15
别再误会MCP了!一篇写给AI工程师的硬核“辟谣”指南
2025-09-14
为什么说阿里巴巴正转身“AI科技公司”
2025-09-14
阿里云赢 AI 云的真相:不是模型比人强,是把 “用 AI 的门槛” 拆成了 “可复制的效率”
2025-09-14
一万两千字,解读智能应用开发最佳实践
2025-09-14
AI 新玩法:GraphRAG × Ollama 打造更聪明的智能体
2025-09-14
阿里云视觉多模态理解大模型开发训练部署
2025-09-14
2025.9 回顾过去1年的LLM圈进展 与 展望
2025-09-14
抢先实测美团首个AI Agent,让我体验一把「懒人点餐」的快乐
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-06-19
2025-07-29
2025-09-08
2025-08-19
2025-08-20
2025-07-04
2025-09-14
2025-09-12
2025-09-11
2025-09-11
2025-09-09
2025-09-09
2025-09-08
2025-09-08