微信扫码
添加专属顾问
我要投稿
一个月前,Meta 发布了开源大模型 llama3 系列,在多个关键基准测试中优于业界 SOTA 模型,并在代码生成任务上全面领先。
此后,开发者们便开始了本地部署和实现,比如 llama3 的中文实现、llama3 的纯 NumPy 实现等。
几天前,有位名为「Nishant Aklecha」的开发者发布了一个从零开始实现 llama3 的存储库,包括跨多个头的注意力矩阵乘法、位置编码和每个层在内都有非常详细的解释,帮助我们理解大语言模型是如果构建和工作的。
该项目得到了大神 Karpathy 的称赞,他表示项目看起来不错,完全展开后,通过模块嵌套和相互调用,可以更容易看到实际的情况。
项目地址:https://github.com/naklecha/llama3-from-scratch
详细实现见仓库地址:https://github.com/wdndev/llama3-from-scratch-zh
项目主要翻译「Nishant Aklecha」的 https://github.com/naklecha/llama3-from-scratch 仓库,并对中文版做了特殊的适配,使该项目能在一台 16G RAM 的笔记本电脑上运行:
tiktoken
库进行文本分词。<|begin_of_text|>
、文本结束<|end_of_text|>
等。tokenizer.encode
将文本转换为标记序列,通过tokenizer.decode
将标记序列转换回文本。dim
: 4096n_layers
: 32n_heads
: 32n_kv_heads
: 8vocab_size
: 128256multiple_of
、ffn_dim_multiplier
、norm_eps
、rope_theta
等。torch.nn.Embedding
层将标记ID转换为词嵌入向量。53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-14
AI时代如何为企业和个人赋能
2025-06-14
没吃透 Function Calling?难怪你不理解 AI Agent 为何非来不可!
2025-06-14
浅尝一下微软的AutoGen框架
2025-06-14
基于大模型的智能运营 | 智能体式编排,业务流程管理的新阶段
2025-06-14
从Manus爆火看Agent AI的技术演进与市场变革——AI Agent全景研报
2025-06-14
张鹏对谈李广密:Agent 的真问题与真机会,究竟藏在哪里?
2025-06-14
为什么说Maus是未来任务型AI系统的代表?
2025-06-14
AI agent如何进化为天网
2025-05-29
2025-03-20
2025-03-21
2025-04-11
2025-03-20
2025-03-19
2025-03-20
2025-03-19
2025-03-19
2025-03-19
2025-06-14
2025-06-14
2025-06-13
2025-06-13
2025-06-13
2025-06-13
2025-06-12
2025-06-12