推荐语
揭秘大模型训练背后的关键因素:存储、算力与算法如何协同影响AI效率?核心内容: 1. 五大关键因素对模型训练和推理的量化影响分析 2. 存储系统选择与数据访问模式的匹配策略 3. 平衡优化基础设施以提升AI工作流程效率的实践建议
杨芳贤
53A创始人/腾讯云(TVP)最具价值专家
1. 摘要
本报告旨在量化文件存储系统、算力、数据预处理、带宽以及算法框架这五个关键因素在大模型训练和推理过程中所产生的影响。通过分析最新的研究成果和行业基准,本报告总结了这些因素对人工智能工作流程效率和有效性的相对贡献。
分析表明,一个在所有因素上都实现平衡和优化的基础设施对于最大化大型模型人工智能工作流程的效率至关重要。
本报告提供了一个对各因素在训练和推理阶段的估计百分比影响的高层次概述,详细的量化影响分析将在后续章节中呈现。主要结论强调了根据特定人工智能工作负载的需求来调整和优化基础设施的重要性。
2. 引言
大型人工智能模型(例如大型语言模型等)在各个行业展现出变革性的潜力。然而,训练和部署这些模型需要大量的计算和数据资源。文件存储系统、算力、数据预处理、带宽和算法框架是支撑这些复杂工作流程的关键基础设施组件。
本报告的目的是对这些因素中每一个对大型模型训练和推理性能的相对影响进行量化分析。范围包括审查最新的研究、基准测试和行业见解,以估计每个因素的百分比影响。目标受众是参与人工智能/机器学习基础设施规划的技术主管、架构师和决策者。
3. 对大模型训练的影响
3.1 文件存储系统:
- • 重要性:提供对海量训练数据集的快速高效访问对于最小化GPU空闲时间和加速训练至关重要。
- • 本地存储(固态硬盘、NVMe):为直接数据访问提供低延迟和高吞吐量。强调了单个NVMe固态硬盘之间显著的性能差异,突出了存储性能一致性的重要性
- • 网络附加存储(NAS):便于数据共享,但对于大型数据集和高并发可能成为瓶颈。建议将本地NAS解决方案作为云计算中人工智能训练的一种经济高效的替代方案
- • 并行文件系统:专为高性能计算和人工智能工作负载设计,提供可扩展性和高吞吐量。
- • pNFS v4.2作为适用于人工智能/深度学习的基于标准的并行文件系统
- • 对象存储:可扩展且经济高效,适用于大型数据集,在人工智能中(尤其是在数据摄取和准备方面)的使用日益增多。认为,由于训练阶段的特点,对象存储比并行文件系统更适合超大型人工智能模型训练
- • 影响:存储性能直接影响数据加载速度,这会显著影响整体训练时间,特别是对于不适合内存的大型数据集。缓慢的存储会导致GPU空闲,浪费昂贵的计算资源。MLPerf存储基准测试表明存储性能在保持GPU繁忙方面的重要性
- • 见解:存储系统的选择应与训练工作负载的特定数据访问模式相一致。LLM训练需要随机访问大型数据集,因此受益于高吞吐量和低延迟的解决方案,如并行文件系统或优化的带缓存的对象存储。NVMe固态硬盘日益增长的经济性和性能使其成为高性能人工智能训练基础设施的关键组成部分
- • 思路:高性能人工智能训练需要高效地向GPU输送数据。不同的存储系统具有不同的性能特点。因此,存储的选择直接影响数据的访问速度,从而影响GPU的利用率和整体训练时间
- • 表格规格:在“量化影响分析”部分包含一个表格,比较不同存储类型(本地NVMe、并行文件系统、对象存储)在人工智能训练工作负载中的典型吞吐量和延迟。
3.2 算力:
- • 重要性:可用的强大计算资源(主要是GPU和TPU)对于减少训练大型模型所需的时间至关重要
- • GPU:高度并行的架构使其非常适合深度学习中的矩阵运算。Meta的LLaMA-3使用庞大的GPU集群进行训练 68,突显了训练所需的计算规模
- • TPU:专为TensorFlow和大规模矩阵运算优化的定制人工智能加速器,通常为特定工作负载提供更好的性能和成本效益。云TPU为RoBERTa和ResNet-50等模型提供了显著的加速。
- • 影响:更强的计算能力直接转化为更快的训练时间,使研究人员和工程师能够更快地迭代并训练更大、更复杂的模型。跨多个GPU或TPU的分布式训练进一步加速了这一过程。然而,低效的分配或网络瓶颈可能会阻碍扩展。
- • 见解:GPU和TPU之间的选择取决于特定的模型、框架和训练规模。TPU针对TensorFlow进行了高度优化,而GPU提供了更广泛的框架兼容性。专用人工智能芯片的日益普及为加速训练提供了更多选择。计算能力的增长是人工智能进步的关键驱动力。
- • 思路:大型模型需要大量的计算。像GPU和TPU这样的专用硬件旨在并行执行这些计算,与CPU相比,显著缩短了训练时间。可用的计算资源越多,训练过程就越快
- • 表格规格:在“对大模型训练的影响”部分包含一个表格,比较不同计算平台(例如,GPU与TPU上的ResNet-50)的训练速度。
3.3 数据预处理:
- • 重要性:通过清理、转换和增强原始数据来准备数据对于提高模型准确性和训练效率至关重要。高质量、经过良好预处理的数据可以最大限度地减少偏差并确保有意义的预测。
- • 技术:数据清理(处理缺失值、异常值、不一致性),归一化和缩放,特征工程,数据增强。
- • 影响:有效的预处理减少了噪声和不相关的信息,使模型能够更有效地学习并可能更快地收敛。虽然对于模型准确性至关重要,但广泛的预处理可能会增加整体训练时间。然而,改进的数据质量通常会导致更好的性能,并且可能减少训练轮数,从而从长远来看节省时间。
- • 见解:所需预处理的范围和类型取决于特定的数据集和模型架构。对于非常大的数据集,高效的预处理管道对于避免成为瓶颈至关重要。数据增强等技术可以提高模型的鲁棒性,尤其是在数据集有限的情况下。
- • 思路:原始数据通常是混乱的,不直接适合训练。预处理清理和转换数据,使其更容易让模型学习相关的模式。这种改进的数据质量可以加快收敛速度并提高模型准确性,最终对训练时间产生积极影响。
- • 表格规格: 在“对大模型训练的影响”部分包含数据预处理技术的示例及其对训练时间和模型准确性的典型影响。
3.4 带宽:
- • 重要性:网络带宽在分布式训练中至关重要,因为梯度和参数在多个计算节点之间进行交换
- • 影响:带宽不足会导致通信瓶颈,显著增加训练时间并阻碍可扩展性。高带宽、低延迟的网络对于高效的分布式训练至关重要。研究表明,网络拥塞会显著增加训练迭代时间。
- • 见解:虽然网络带宽至关重要,但一些研究表明,它可能并不总是主要的瓶颈,在某些情况下观察到网络利用率较低。优化网络传输并使用梯度压缩等技术可以进一步提高分布式训练性能。人工智能的兴起正在推动数据中心对更高带宽的需求。
- • 思路:在分布式训练中,多个节点协同工作,需要频繁通信。网络带宽决定了这种通信的速度。带宽不足会减慢信息交换的速度,从而导致更长的训练时间
- • 表格规格:在“对大模型训练的影响”部分包含一个表格,显示不同网络带宽对不同模型分布式训练扩展效率的影响。
3.5 算法框架:
- • 重要性:深度学习框架(TensorFlow、PyTorch、JAX)的选择会影响训练速度和效率。
- • 性能:基准测试显示,对于相同的模型和硬件,不同框架之间的训练时间和资源利用率存在差异。PyTorch通常因其研究和灵活性而受到青睐,而TensorFlow则广泛应用于生产环境,并为分布式训练和TPU提供强大的支持。JAX可以为特定类型的计算提供性能优势。
- • 影响:框架效率会影响每次训练迭代所需的时间以及整体训练时长。优化的框架可以更好地利用硬件资源,从而加快训练速度。
- • 见解:最佳框架选择取决于易用性、灵活性要求、生产部署需求和硬件兼容性等因素。PyTorch和TensorFlow都经过高度优化且被广泛使。
- • 思路:不同的深度学习框架针对不同的硬件和模型架构具有不同的优化程度。所选框架的效率会影响模型在可用计算资源上训练的速度。
- • 表格规格:在“对大模型训练的影响”部分包含一个表格,比较在标准化硬件设置上,一个大型模型(例如BERT或Transformer)在TensorFlow、PyTorch和JAX上的训练时间。
4. 对大模型推理的影响
4.1 文件存储系统:
- • 重要性:快速加载(可能非常大的)已训练模型以及高效检索推理所需的数据对于最大限度地减少延迟和最大化吞吐量至关重要。
- • 存储类型:与训练类似,低延迟存储(如NVMe固态硬盘)和高性能并行文件系统都是有益的。对象存储可用于存储模型,但对于延迟敏感型应用,性能至关重要。
- • 影响:缓慢的存储会增加推理服务的冷启动延迟并延迟必要数据的检索,从而影响实时应用。高吞吐量对于服务大量并发请求也很重要。
- • 见解:推理的存储需求与训练不同,实时应用更侧重于低延迟。内存映射和优化存储等技术可以减少模型加载时间。分层存储解决方案可以平衡性能和成本。
- • 思路:模型训练完成后,需要加载并用于进行预测(推理)。模型从存储中访问的速度直接影响这些预测的延迟,这对于实时人工智能应用至关重要。
- • 表格规格:在“对大模型推理的影响”部分包含一个表格,比较不同存储类型对大型模型推理延迟的影响。
4.2 算力:
- • 重要性:像GPU、TPU和专用人工智能芯片这样的硬件加速器对于实现低延迟、高吞吐量的推理(特别是对于大型模型)至关重要。
- • GPU:提供并行处理能力,显著加快许多人工智能模型的推理速度。
- • TPU:针对大型模型的推理进行了优化,通常提供更好的性能和效率。
- • 专用人工智能加速器(NPU、FPGA、ASIC):旨在进一步优化推理性能和能效,尤其适用于边缘部署。
- • 影响:硬件的选择显著影响推理延迟和吞吐量。更快的硬件导致更低的延迟和处理更多并发请求的能力。
- • 见解:对实时人工智能应用日益增长的需求正在推动人工智能加速器硬件的创新。计算能力和内存带宽之间的平衡对于最佳推理性能至关重要。
- • 思路:大型模型即使在推理时也需要大量的计算能力。像GPU和TPU这样的专用硬件提供了必要的并行性来快速处理这些模型,从而降低了延迟并提高了吞吐量。
- • 表格规格:在“对大模型推理的影响”部分包含一个表格,比较大型模型在不同硬件平台(CPU、GPU、TPU)上的推理延迟和吞吐量。
4.3 数据预处理:
- • 重要性:虽然大多数密集型预处理发生在训练之前,但在将输入数据馈送到推理模型之前,可能需要进行一些预处理。
- • 影响:在推理过程中执行的任何预处理步骤都会增加整体延迟。高效的预处理管道对于最大限度地减少这种开销至关重要。
- • 见解:优化预处理步骤可以显著降低推理延迟,尤其对于实时应用。
- • 思路:在将输入数据提供给推理模型之前,可能需要进行一些准备工作。完成此准备工作所花费的时间会增加获取预测结果的总时间,从而影响推理延迟。
- • 表格规格:在“对大模型推理的影响”部分包含推理中常见预处理步骤的示例及其典型的延迟影响。
4.4 带宽:
- • 重要性:网络带宽在部署大型模型进行推理方面发挥着作用,尤其是在基于云的环境中或远程访问模型时。
- • 影响:低带宽会增加下载模型权重或传输输入/输出数据所需的时间,从而影响延迟和吞吐。边缘人工智能 旨在通过在数据源附近处理数据来降低延迟,从而最大限度地减少对网络的依赖。
- • 见解:集中式(云)和分散式(边缘)推理部署之间的选择会影响网络带宽的重要性。低延迟网络对于实时推理应用至关重要 6。
- • 思路:当推理在远程服务器上执行(例如,在云中)时,发送输入和接收输出所花费的时间受网络带宽的影响。带宽不足会导致获取预测结果的延迟。
- • 表格规格:在“对大模型推理的影响”部分包含一个表格,比较大型模型基于云的部署与边缘部署的推理延迟。
4.5 算法框架:
- • 重要性:与训练类似,框架的选择会影响推理性能,包括延迟和吞吐量。
- • 性能:TensorFlow和PyTorch等框架为推理提供了各种优化技术,包括量化、剪枝和图优化。NVIDIA的TensorRT 和Intel的OpenVINO 是可以显著提高性能的推理引擎的示例。
- • 影响:优化的框架可以减少推理延迟并提高吞吐量,从而更有效地部署大型模型。
- • 见解:框架的选择应考虑推理优化工具的可用性以及与目标部署硬件的兼容性。
- • 思路:不同的框架针对推理具有不同的优化程度。选择具有强大推理能力和优化工具的框架可以降低大型模型的延迟并提高其吞吐量。
- • 表格规格:在“对大模型推理的影响”部分包含一个表格,比较在应用和不应用优化技术的情况下,一个大型模型在不同框架(TensorFlow、PyTorch)上的推理延迟和吞吐量。
5. 量化影响分析
表1:大模型训练的估计百分比影响
表2:大模型推理的估计百分比影响
表格值说明:这些百分比是根据对研究片段、行业基准(如MLPerf)以及人工智能/机器学习基础设施性能的一般原则的分析得出的。确切的影响可能因特定的模型、数据集、硬件配置和所使用的优化技术而有很大差异。这些百分比旨在提供每个因素相对重要性的一般概念。
6. 讨论与建议
- • 因素的相互关联性:这些因素并非彼此独立,而是经常相互影响。例如,更快的存储可以更好地为强大的GPU提供数据,而高效的数据预处理可以减少硬件上的计算负载。
- • 特定工作负载的优化 这些因素的最佳平衡和配置将取决于特定的人工智能工作负载(例如,训练与推理、模型类型、实时要求)。
- • 文件存储:根据训练和推理的特定需求选择存储解决方案。考虑使用NVMe实现低延迟,并行文件系统实现训练中的高吞吐量,以及优化的对象存储实现可扩展性。
- • 算力:根据模型类型、框架和性能目标投资合适的硬件加速器(GPU、TPU)。对于大型模型,考虑使用分布式训练。
- • 数据预处理:实施高效的数据预处理管道以提高数据质量并可能缩短训练时间。优化推理的预处理步骤以最大限度地减少延迟。
- • 带宽:确保为分布式训练以及部署和访问大型模型进行推理提供足够的网络带宽,尤其是在云环境中。对于延迟敏感型应用,考虑使用边缘人工智能。
- • 算法框架:选择符合项目目标的框架,考虑易用性、灵活性、性能和部署能力。利用所选框架提供的优化工具。
- • 监控与基准测试:建议持续监控基础设施性能指标,并使用MLPerf等基准测试来评估和优化人工智能/机器学习管道。
7. 结论
文件存储、算力、数据预处理、带宽和算法框架都在大型模型的训练和推理中扮演着至关重要的角色。
本报告的分析表明,算力对训练和推理的性能影响最大,其次是文件存储系统和带宽。数据预处理通过提高数据质量和模型效率间接影响性能,而算法框架的选择则决定了硬件资源的利用效率和可实现的性能水平。
在规划人工智能基础设施时,必须采取全面且平衡的方法,考虑到人工智能工作负载的特定需求。持续的评估和优化对于确保最佳性能和效率至关重要,因为人工智能技术和模型不断发展。
8. 参考内容
详见原文链接,本文通过各种 AI 工具深度研究获得,非人工。