微信扫码
添加专属顾问
我要投稿
大模型蒸馏技术揭秘:如何让小模型拥有大智慧? 核心内容: 1. 大模型蒸馏的核心原理与软标签的独特价值 2. 两阶段蒸馏流程与关键技术实现步骤 3. 学生模型架构设计与知识迁移的扩展方法
蒸馏的本质是知识迁移,而非简单的模型压缩。其核心在于利用教师模型提供的软标签(Soft Labels) 作为更丰富的监督信号,替代传统训练中仅使用的硬标签(Hard Labels)。
硬标签 vs. 软标签
温度系数(Temperature Scaling)
蒸馏过程分为两个阶段:教师模型训练 和 学生模型蒸馏。
学生模型通过联合损失函数进行训练,同时学习教师模型的软标签和真实数据的硬标签:
学生模型架构设计
蒸馏目标扩展
在线蒸馏(Online Distillation)
数据增强与迁移
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-22
最火、最全的Agent记忆综述,NUS、人大、复旦、北大等联合出品
2025-12-22
Claude Code Skill 设计机制深度分析
2025-12-22
深度解读DeepMind最新研究:为什么需要像管股市一样去管AI?
2025-12-22
人工智能 | 企业级AI市场的快速爆发,但仍停留在Copilot阶段、Agent还没到来 —— Menlo Ventures
2025-12-21
剿杀n8n!Google Gems 重塑AI工作流,真一句话一个应用
2025-12-21
2026年将属于能善用最便宜的Token,解决最脏最累问题的“务实主义者”(长文)
2025-12-21
警惕!每天用AI的人,大脑正在变“懒”:MIT实验证实思考退化危机
2025-12-21
CosyVoice3一键包,3秒完美复刻声音!
2025-10-26
2025-10-02
2025-09-29
2025-10-07
2025-09-30
2025-11-19
2025-10-20
2025-11-13
2025-10-02
2025-10-18
2025-12-22
2025-12-16
2025-12-15
2025-12-14
2025-12-12
2025-12-12
2025-12-11
2025-12-09